PAPER: BUSINESS MATHEMATICS, REASONING \& STATISTICS

(1) Ans. d

Explanation:
Equation $5 x^{2}+8 x+7=0$ and roots are α, β then
Sum of roots $\alpha+\beta=-8 / 5$
Product of roots $\alpha \beta=7 / 5$
Now $\frac{\alpha}{\beta^{2}}+\frac{\beta}{\alpha^{2}}$
$=\frac{\alpha^{3}+\beta^{3}}{\alpha^{2} \beta^{2}} \Rightarrow \frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{(\alpha \beta)^{2}}$
$=\frac{328}{245}$
(2) Ans. c

Explanation:
$\log _{.01} .00000001=\log _{.01}(.01)^{4}=4$
$\log _{\sqrt{3}} 81=\log _{(\sqrt{3})}(\sqrt{3})^{8}=8$
so ratio is $4: 8$

$$
1: 2
$$

(3) Ans. b

Explanation:
Sum of male and female employees Can not be more than ten so option (b) shows right inequality.
(4) Ans. c

Explanation:
Region represented by the line $3 x+2 y=24$ meets the coordinate axes at $(8,0)$ and $(0,12)$. Since the shaded region lies below the line $3 x+2 y=24$ therefore it is represented by less than or equal to sign i.e. $3 x+2 y \leq 24$.
Similarly for thelinex+2y $=16$ the shaded region lies below the line therefore it is represented by less than or equal to sign i.e. $x+2 y \leq 16$
Clearly $X \geq 0$ and $y \geq 0$ represents the region lying on the right side of y axis and above x axes.
(5) Ans. d

Explanation:
$x=7^{\frac{1}{3}}-7^{-\frac{1}{3}}$
$x^{3}=7-\frac{1}{7}-3 x$
$x^{3}+3 x=\frac{48}{7}$
$7 x^{3}+21 x=48$
(6) Ans. a

Explanation:
$\log _{2} \log _{2} \log _{3} x=0$
$\log _{2} \log _{3} x=2^{0}=1$
$\log _{3} x=2^{1}=2$
$\mathrm{x}=3^{2}$
$=9$
(7) Ans. b

Explanation:

$$
\begin{aligned}
\text { Required sum } & =(16)^{2}+\frac{1}{2}(16)^{2}+\frac{1}{4}(16)^{2}+\ldots \\
& =(16)^{2}\left[1+\frac{1}{2}+\frac{1}{4}+\ldots\right] \\
& =(16)^{2}\left[\frac{1}{1-\frac{1}{2}}\right]=512 \text { sq. } \mathrm{cm}
\end{aligned}
$$

(8) Ans. d

Explanation:
$\frac{\log \mathrm{x}}{2}=\frac{\log \mathrm{y}}{3}=\frac{\log \mathrm{z}}{5}$ then $\mathrm{yz}=$?
Sol. Let $\frac{\log x}{2}=\frac{\log y}{3}=\frac{\log z}{5}=k$
$\log _{\mathrm{e}} \mathrm{x}=2 \mathrm{k}$
$\therefore \mathrm{e}^{2 \mathrm{k}}=\mathrm{x}$
$\log _{\mathrm{e}} \mathrm{y}=3 \mathrm{k}$
$e^{3 k}=y$
$\log _{\mathrm{e}} \mathrm{z}=5 \mathrm{k}$
$e^{5 k}=z$
Now : yz $\Rightarrow \mathrm{e}^{3 \mathrm{k}} . \mathrm{e}^{5 \mathrm{k}}$

$$
\begin{aligned}
& \Rightarrow e^{8 k} \\
& \Rightarrow \mathrm{e}^{4 \mathrm{k} \times 2} \\
& \Rightarrow\left(\mathrm{e}^{2 \mathrm{k}}\right)^{4}
\end{aligned}
$$

$$
\Rightarrow(\mathrm{x})^{4}
$$

(9) Ans. b

Explanation:
$-2 x+3 y \geq 6$ Cuts on X axis $(-3,0)$
Y axis (0,2)
and y is more than x so option (B) is Correct.
(10) Ans. C

Explanation:
Let the total Capital be Rs. X
Then $\left(\frac{X}{3} \times \frac{7}{100} \times 1\right)+\left(\frac{X}{4} \times \frac{8}{100} \times 1\right)+\left(\frac{5 X}{12} \times \frac{10}{100} \times 1\right)=561$
$X=6600$
(11) Ans. a

Explanation:

$$
\begin{aligned}
\text { A } & =\frac{R}{r}\left[(1+r)^{n}-1\right] \\
& =\frac{6000}{0.09}\left[(1+0.09)^{8}-1\right] \\
& =\text { Rs. } 66170.84
\end{aligned}
$$

(12) Ans. a

Explanation:
First Time
$A=3 x$
$P=x$
$\mathrm{n}=6$
Second Time
A $=27 \mathrm{x}$
$\mathrm{P}=\mathrm{x}$
$\mathrm{n}=$?
$\therefore 3 \mathrm{x}=\mathrm{x}\left[1+\frac{\mathrm{r}}{100}\right]^{6}$
$27 \mathrm{x}=\mathrm{x}\left[1+\frac{\mathrm{r}}{100}\right]^{\mathrm{n}}$
$3=\left[1+\frac{\mathrm{r}}{100}\right]^{6}$
$(3)^{3}=\left[1+\frac{r}{100}\right]^{n}$
$\left\{\left[1+\frac{\mathrm{r}}{100}\right]^{6}\right\}^{3}=\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}}$
$\left(1+\frac{\mathrm{r}}{100}\right)^{18}=\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}} \Rightarrow \mathrm{n}=18$
(13) Ans. c

Explanation:
Ram:Shyam $=3: 4$
Shyam:Mohan = 4:5
\therefore Amount of Mohan will be $==\frac{5}{3} \times 600=1000$
(14) Ans. a

Explanation:
Boys : Girls = 3 : 5.
Sum of the ratios $=3+5=8$.
Number of boys in the school $=(3 \times 720) / 8=270$
Number of girls in school $=(5 \times 720) / 8=450$.
Let the number of new boys admitted be x, then number of boys become $(270+x)$.
After admitting 18 new girls, the number of girls become $450+18=468$.
According to given condition of the problem : $(270+x) / 468=2 / 3$
$\Rightarrow 3(270+x)=2 \times 468$ or $810+3 x=936$ or $3 x=126$ or $x=42$.
(15) Ans. b

Explanation:
If $1^{\text {st }}$ man spent $=$ Rs. 125
$2^{\text {nd }}$ man spent $=$ Rs. 125
Similarly 125 man spent = Rs. 125
So 125 men spent Rs. $125^{\text {th }}$ each, therefore the total money spent by them is given by $125 \times 125=15625$
(16) Ans. c

Explanation:
$a+b+c=0$,
$a+b=-c$,
$(a+b)^{2}=c^{2}$,
$a^{2}+b^{2}+2 a b=c^{2}$
$a^{2}+b^{2}=c^{2}-2 a b$
$\frac{a^{2}+b^{2}+c^{2}}{c^{2}-a b}=\frac{c^{2}-2 a b+c^{2}}{c^{2}-a b}=2$
(17) Ans. c

Explanation:

Here

$$
\frac{(243)^{\frac{n}{5}} \cdot 3^{2 n+1}}{9^{n} \times 3^{n-1}}=\frac{\left(3^{5}\right)^{\frac{n}{5}} \times 3^{2 n+1}}{\left(3^{2}\right)^{n} \times 3^{n-1}}=\frac{3^{\left(5 \times \frac{n}{5}\right)} \times 3^{2 n+1}}{3^{2 n} \times 3^{n-1}}=\frac{3^{n} \times 3^{2 n+1}}{3^{2 n} \times 3^{n-1}}
$$

$=\frac{3^{n+(2 n+1)}}{3^{2 n+n-1}}=\frac{3^{(3 n+1)}}{3^{(3 n-1)}}=3^{(3 n+1)-(3 n-1)}=3^{2}=9$.
(18) Ans. b

Explanation :
Suppose that I am x years old and my son is y years old. Then, according to question,
$x=3 y$
and $x+5=\frac{5}{2}(y+5)$
from (i) and (ii), $3 y+5=\frac{5}{2}(y+5)$
$\Rightarrow 6 y+10=5 y+25$
$\Rightarrow y=15$
Substituting in (i) gives, $x=3 \times 15=45$
Hence, my age $=45$ years.
(19) Ans. c

Explanation:
$\frac{-}{B} \times \frac{B}{C} \times \frac{C}{D}=\frac{2}{3} \times \frac{4}{5} \times \frac{5}{8}$
$\frac{A}{D}=\frac{1}{3}$
(20) Ans. c

Explanation:
$\int \frac{8^{1+x}+4^{1-x}}{2^{x}} d x$
$=\int \frac{2^{3 x+3}+2^{2-2 x}}{2^{x}} d x$
$=\int\left(2^{2 x+3}+2^{2-3 x}\right) d x$
$=\frac{2^{2 x+3}}{2 \log 2}+\frac{2^{2-3 x}}{(-3) \log 2}+c$
$=\frac{2^{2 x+3}}{2 \log 2}-\frac{2^{2-3 x}}{3 \log 2}+c$
(21) Ans. c

Explanation:
$\mathrm{a}: \mathrm{b}=\mathrm{b}: \mathrm{c}$
$b^{2}=a c$
$a^{4}:\left(b^{2}\right)^{2}$
$a^{4}:(a c)^{2}$
$a^{4}: a^{2} c^{2}$
$a^{2}: c^{2}$
(22) Ans. c

Explanation :
Since the cost curve is linear we consider cost curve as $y=A x+B$ where y is total
cost. Now for $x=80, y=2,20,000 . \therefore 2,20,000=80 A+B$.
and for $x=125 ; y=2,87,500 \therefore 2,87,500=125 A+B$.
Subtracting (i) from (ii) $45 A=67,500$ or $A=1500$
From (i) $2,20,000-1500$ (80) $=B$ or $B=2,20,000-1,20,000=1,00,000$
Thus equation of cost line is $y=1,500 x+1,00,000$.
For $x=95, y=1,42,500+1,00,000=$ Rs. $2,42,500$.
\therefore Cost of 95 T.V. set will be Rs. $2,42,500$.
(23) Ans. b

Explanation:
Roots are $-3,1,2$ then
Factors are $x+3, x-1, x-2$
and equation is $(x+3)(x-1)(x-2)=0$
$\mathrm{x}^{3}-7 \mathrm{x}+6=0$
(24) Ans. d

Explanation:
$\mathrm{x}=\sqrt{1+\mathrm{x}}$
$x^{2}=1+x$
$x^{2}-x-1=0$
$\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ from quadratic equation
$x=\frac{+1 \pm \sqrt{5}}{2}$
$x=\frac{+1+\sqrt{5}}{2}$ only this solution is possible
(25) Ans. b

Explanation:
${ }^{n+2} \mathrm{Cr}={ }^{\mathrm{n}+2} \mathrm{C}_{10}-\mathrm{r}$
or $n+2=r+10-r$
or $\mathrm{n}=8$
then $8_{C_{6}}=28$
(26) Ans. C

Explanation:
We have DRCTRIEO
$=\frac{6!\times 3!}{2!}=2160$
(27) Ans. D

Explanation:
Required number of numbers $=5 \times 4 \times 1=20$
(28) Ans. D

Explanation:
No. of ways $=7 C_{4} \times 3 C_{2}+7 C_{3} \times 3 C_{3}$
$=105+35=140$
(29) Ans. b

Explanation:

By formula

$$
\begin{aligned}
& \quad n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C) \\
& 92 \% \quad=42 \%+51 \%+68 \%-30 \%-28 \%-36 \%+n(A \cap B \cap C) \\
& n(A \cap B \cap C)=25 \%
\end{aligned}
$$

The percentage of persons who read only one paper
$=1 \%+18 \%+29 \%=48 \%$
(30) Ans. b

Explanation:
$S_{\infty}=\frac{a}{1-r}=\frac{\sqrt{3}}{1-\frac{1}{3}}=\frac{3 \sqrt{3}}{2}$
(31) Ans. b

Explanation:
$\mathrm{f}(\mathrm{x})=\sqrt{x+\sqrt{x+\ldots \infty}}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\sqrt{x+f(x)}$
On squaring both sides, we get
$[f(x)]^{2}=x+f(x)$
differentiation both sides
$2 f(x) f^{\prime}(x)=1+f^{\prime}(x)$
$f^{\prime}(x)[2 f(x)-1]=1$
$f^{\prime}(x)=\frac{1}{2 f(x)-1}$
(32) Ans. a

Explanation:
No. of ways that can be formed by using the word 'BANANA' $=\frac{6!}{3!2!}=60$
No. of ways in which two N comes together $=\frac{5!}{3!}=20$
\because Required No. of ways $=60-20=40$
(33) Ans. d

Explanation:

$$
(a, a),(b, b),(c, c) \varepsilon R
$$

So R is a reflexive relation
But $(a, b) \varepsilon \mathrm{R}$ and $(\mathrm{b}, \mathrm{a}) \notin \mathrm{R}$
Thus, R is not a symmetric relation.
Also, (a, b), $(\mathrm{b}, \mathrm{c}) \varepsilon \mathrm{R} \Rightarrow(\mathrm{a}, \mathrm{c}) \notin \mathrm{R}$
Hence R is not a transitive relation
(34) Ans. a

Explanation:

$$
n(A-B)=n(A)-n(A \cap B)
$$

$47=115-n(A \cap B)$
$n(A \cap B)=68$
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$=115+326-68=373$
(35) Ans. a

Explanation :
$\int_{-1}^{1}\left(x^{5}-3 x^{3}+2 x\right) d x=0$
$\int_{-a}^{a} f(x) d x=0$ if $f(x)$ is odd function
(36) Ans. a
(37) Ans. a
(38) Ans. a
(39) Ans. b
(40) Ans. a
(41) Ans. a
(42) Ans. a
(43) Ans. a
(44) Ans. c
(45) Ans. b
(46) Ans. c
(47) Ans. a
(48) Ans. a
(49) Ans. c
(50) Ans. c
(51) Ans. b
(52) Ans. b
(53) Ans. d
(54) Ans. b
(55) Ans. a
(56) Ans. c
(57) Ans. d
(58) Ans. d
(59) Ans.d
(60) Ans. a
(61) Ans. a
(62) Ans. d
(63) Ans. c

Explanation:
Arrange the observations in ascending order: $\frac{x}{7}, \frac{x}{6}, \frac{x}{5}, \frac{x}{3}, \frac{x}{2}, x$
Median $=$ size of $\frac{6+1}{2}=3.5$ th term
Median $=\frac{\text { size of } 3 \text { rd term }+ \text { size of } 4 \text { th term }}{2} \Rightarrow 24=\frac{\frac{x}{5}+\frac{x}{3}}{2} \Rightarrow x=90$
(64) Ans. c

Explanation : Average speed $=\frac{2 a b}{a+b}$

$$
\begin{aligned}
& 150=\frac{2 \times 120 \times \mathrm{b}}{120+\mathrm{b}} \\
& \mathrm{~b}=200 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

(65) Ans. d

Explanation:

$$
\begin{aligned}
\text { G.M. } & =(4 \times 20 \times 36)^{\frac{1}{3}} \\
& =(4 \sqrt[3]{45})
\end{aligned}
$$

(66) Ans. b

Explanation:
Quartile deviation does not depends on extreme values. So quartile deviation can be calculated for open end classes.
(67) Ans. d
(68) Ans. b

Explanation:
Standard Deviation ${ }^{(\sigma)}=\sqrt{\text { Variance }}$
$=\sqrt{100}=10$
\because Mode $=3$ Median -2 Mean
$29=(3 \times 23)-2$ Mean
Mean $=(69-29) / 2=20$
\because Coefficient of variation (CV) $=\frac{\sigma}{\overline{\mathrm{X}}} \times 100$ $\therefore \mathrm{CV}=\frac{10}{20} \times 100=50 \%$
(69) Ans. c
(70) Ans. b

Explanation:
$\mathrm{n}=32, \sigma=5, \Sigma \mathrm{x}=80$
$\sigma=\sqrt{\frac{\Sigma x^{2}}{n}-(\bar{x})^{2}}$
$(5)^{2}=\frac{\Sigma x^{2}}{32}-6.25$
$\Sigma x^{2}=1000$
(71) Ans. c

Explanation:
(72) Ans. b
(73) Ans. a

Explanation:
The regression line : $y-\bar{y}=b_{y x}(x-\bar{x})$
or $y-8.8=1.24(x-5.5)$
$\Rightarrow y=1.24 x+1.98$
(74) Ans. b

Explanation:
The two lines of regression are
$2 x-7 y+6=0$
....(1)
and $7 x-2 y+1=0$
....(2)
If we take (1) as the regression equation of Y on X, then (2) is that of X on Y. We can write these as :
$y=\frac{2}{7} x+\frac{6}{7}$ and $x=\frac{2}{7} y-\frac{1}{7}$
respectively.
$\therefore \mathrm{b}_{\mathrm{yx}}=\frac{2}{7}$ and $\mathrm{b}_{\mathrm{xy}}=\frac{2}{7}$
$\Rightarrow \mathrm{b}_{\mathrm{yx}} \mathrm{b}_{\mathrm{xy}}=\frac{2}{7} \times \frac{2}{7}=\frac{4}{49}<1$
So, our choice is valid.
Now, $r^{2}=b_{y x} b_{x y}=\frac{4}{49} \Rightarrow r=\frac{2}{7}$
(Note that $b_{y x}>0$), so $r>0$
(75) Ans. b

Explanation :
$r_{R}=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)}$
$0.8=1-\frac{6 \Sigma \mathrm{~d}^{2}}{990}$
$\Sigma \mathrm{d}^{2}=33$
Cor. $\Sigma \mathrm{d}^{2}=33-(7)^{2}+(9)^{2}=65$
Cor. $r_{R}=1-\frac{6 \times 65}{990}$
$=0.61$
(76) Ans. a

Explanation:
Laspeyre's Price Index is based on base year Quantity.
Since Formula is $\mathrm{L}=\frac{\Sigma \mathrm{P}_{1} \mathrm{Q}_{0}}{\Sigma \mathrm{P}_{0} \mathrm{Q}_{0}} \times 100$
Hence Q_{0} is constant.
(77) Ans. d

Explanation:
$\mathrm{P}_{01}=\sqrt{\frac{\sum \mathrm{P}_{1} \mathrm{q}_{0}}{\sum \mathrm{P}_{0} \mathrm{q}_{0}} \times \frac{\sum \mathrm{P}_{1} \mathrm{q}_{1}}{\sum \mathrm{P}_{0} \mathrm{q}_{1}}} \times 100=94.88$
(78) Ans. d

Explanation : Regression coefficient are independent of change of origin but not scale (As per Fundamental Principle)
(79) Ans. b

Explanation : Chain index for any year
$=\frac{\text { Link relative(index) of current year } \times \text { Chain index of the previous year }}{100}$
(80) Ans. d

Explanation:
Using Formula : Real wage $=\frac{\text { Money wage }}{\text { Price Index }} \times 100$
$\Rightarrow 1680=\frac{\text { Money Wage }}{\left(\frac{215}{120} \times 100\right)} \times 100$
\therefore Money Wage $=\frac{215}{120} \times 1680=3010$ Rs.
\therefore Loss of worker $=3010-3000=10$ Rs.
(81) Ans. b
(82) Ans. c
(83) Ans. b

Explanation:
Dorbish-Bowley's index number $=\frac{L+P}{2}=145$
$\mathrm{L}=290-\mathrm{P}=140$
$\mathrm{f}=\sqrt{L \times P}=\sqrt{140 \times 150}=144.91$
(84) Ans. a
(85) Ans. b
(86) Ans. c

Explanation: $\mathrm{P}\left(\mathrm{A}_{1}\right) \cdot \mathrm{P}\left(\mathrm{A}_{2}\right)=\frac{2}{3} \mathrm{x} \frac{3}{8}=\frac{1}{4}=P\left(A_{1} \cap A_{2}\right)$
So, A_{1} and A_{2} are Independent but not mutually exclusive
(87) Ans. d
(88) Ans. a

Explanation :

Commodity	A	B	C	D	E	F
Group Index (R)	120	132	98	115	108	98
Weight (W)	6	3	4	2	1	4
(RW)	720	396	392	230	108	392

General Index $=\frac{\sum \mathrm{RW}}{\Sigma \mathrm{W}}=\frac{2238}{20}=111.90$
(89) Ans. b

Explanation:
$\mathrm{p}=\frac{1}{5000}, \mathrm{n}=10000, \mathrm{~m}=\mathrm{np}=2$
$\mathrm{p}(\mathrm{x}=0)=\frac{\mathrm{e}^{-2}(2)^{0}}{0!}=\mathrm{e}^{-2}$
(90) Ans. d

Frequency of class $=5$
First change inclusive class 49-53 in to exclusive form
So class is 48.5-53.5
Class length $=53.5-48.5=5$
Frequency density $=\frac{\text { Frequency of class }}{\text { Class length }}$
Frequency density $=\frac{5}{5}=1$
(91) Ans. b

Explanation: Less than ogive\& more than Ogive intersect at a point called MEDIAN or we can say second quartile.
(92) Ans. d

Explanation:
$\because \sum P=1 \Rightarrow 3 k+5 k+2 k+4 k+3 k+3 k=1 \Rightarrow 20 k=1 \Rightarrow k=0.05$

x	1	2	3	4	5	6	
P	0.15	0.25	0.1	0.2	0.15	0.15	$\sum P=1$
$\mathrm{P} x$	0.15	0.5	0.3	0.8	0.75	0.9	$\sum P x=3.4$

Expected value $E(x)=\sum P x=3.4$
(93) Ans. b
(94) Ans. a
(95) Ans. c
(96) Ans. c
(97) Ans. c
(98) Ans. b

We know that if $u=\frac{x-a}{b}$ and $v=\frac{y-c}{d}$, thenr $r_{x y}=\frac{b d}{|b||d|} r_{u v}$
$u=-5 x+6=\frac{x-6 / 5}{(-1 / 5)}, v=\frac{(y-20 / 3)}{(7 / 3)}$
Here $b=-1 / 5, d=7 / 3$

MITTAL COMMERCE CLASSES

Since $b=-1 / 5$ and $d=7 / 3$ are of opposite sign, so $r_{u v}=-r_{x y}=-0.58$.
(99) Ans. d
(100) Ans. c
