(GCF-1, GCF-3, GCF-5 to GCF-7, SCF-1, SCF-3, VCF-1 \&VCF-3)

PAPER: BUSINESS MATHEMATICS, REASONING \& STATISTICS

(1) Ans. c

Explanation:
$\int \frac{d x}{x^{2}+2 x-3}=\int \frac{d x}{x^{2}+2 x+1-4}$
$=\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)^{2}-2^{2}}$
$\therefore \int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left(\frac{x-a}{x+a}\right)+c$
$=\frac{1}{4} \log \frac{x-1}{x+3}+c$
(2) Ans. C

Explanation:
Taking logarithms, we may write
$\log y=\frac{1}{2}[\log (1-x)-\log (1+x)]$
[differentiation] $\frac{1}{y} \frac{d y}{d x}=\frac{1}{2}\left[\frac{-1}{1-x}-\frac{1}{1+x}\right]$
By cross multiplication
$\left(1-x^{2}\right) \frac{d y}{d x}=-y$
(3) Ans. a

Explanation:
$\frac{d y}{d x}=6 x^{2}-6 x-12$
$\frac{d y}{d x}$ at $\mathrm{x}=0=-12$
(4) Ans. a

Explanation:
$\int\left(x^{3}+3^{x}\right) d x$
$\left[e^{\log x}=x\right]$
$\frac{1}{4} x^{4}+\frac{3^{x}}{\log 3}+c$
(5) Ans. c

Explanation:
$\int f^{\prime}(x)=\int(x-1)$
$f(x)=\frac{x^{2}}{2}-x+c$
$y=\frac{x^{2}}{2}-x+c$
passing through the point $(2,0)$
$\mathrm{c}=0$
$y=\frac{x^{2}}{2}-x$
(6) Ans. b

Explanation:
$T_{5}=a+4 d=14$
$T_{12}=a+11 d=35$
On solving equation (i) and (ii)
$a=2$
(7) Ans.d

Explanation:
$\mathrm{s}_{\mathrm{n}}=\sum n(n+1)$
$\mathrm{s}_{\mathrm{n}}=\sum n^{2}+\sum n$
$\mathrm{s}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+\frac{n(n+1)}{2}$
$=\frac{n(n+1)(n+2)}{3}$
(8) Ans. d

Explanation:
$\mathrm{A}=\frac{R}{r}=\left[(1+r)^{n}-1\right]$
$796870=\frac{R}{0.1}\left[(1+0.1)^{10}-1\right]$
$R=50,000$
(9) Ans. c

Explanation:
No of diagonals in a polygon with n sides
$={ }^{n} \mathrm{c}_{2}-\mathrm{n}=\frac{n(n-3)}{2}$
(10) Ans. b

Explanation:
Here, we have an A.P. with $a=3,00,000 d=10,000$
And $n=20$

Using the sum formula, we get,
$S_{20}=\frac{20}{2}=[6,00,000+19 X 10,000]$
= 79,00,000
(11) Ans. b

Explanation:
$a=3, r=\frac{1}{2}$
$\mathrm{s}_{\mathrm{n}}=\frac{a\left(1-r^{n}\right)}{1-r}$
$\frac{3069}{512}=\frac{3\left[1-\frac{1}{2^{n}}\right]}{1-\frac{1}{2}}$
$\frac{3069}{3072}=1-\frac{1}{2^{n}}$
$\frac{1}{2^{n}}=\frac{1}{1024}$
$n=10$
(12) Ans. c

Explanation:
$a=132$, $1=468$
$\mathrm{I}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$468=132+(n-1)(12)$
$\mathrm{n}=29$
$\mathrm{s}_{\mathrm{n}}=\frac{n}{2}(a+l)$
$\mathrm{s}_{29}=\frac{29}{2}(132+468)=8700$
(13) Ans. b

Explanation:
$\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right] X\left[\begin{array}{llll}3 & 4 & 5 & 6\end{array}\right]$
$=\left[\begin{array}{cccc}3 & 4 & 5 & 6 \\ 6 & 8 & 10 & 12 \\ 15 & 20 & 25 & 30\end{array}\right]$
(14) Ans. b

Explanation:
R is reflexive and symmetric but not transitive, since $(1,2) \in R$ and $(2,3) \in R$ but $(1,3)$ does not belong to R.
(15) Ans. c

Explanation:
$\frac{3 x-4}{2} \geq \frac{x+1-4}{4}$
$12 x-16 \geq 2 x-6$
$10 x \geq 10$
$x \geq 1$
(16) Ans. c

Explanation:
$D=b^{2}-4 a c$
$=(-8)^{2}-4(3)(4)$
$=16$
If $\mathrm{D} \geq 0$ and a perfect square then roots are real, rational and unequal.
(17) Ans. a

Explanation:
Sum of roots $(\alpha+\beta)=\frac{-b}{a}=2$
Product of roots $(\alpha \beta)=\frac{c}{a}=-\frac{1}{2}$
$(\alpha+\beta)^{3}=a^{3}+\beta^{3}+3 \alpha \beta(\alpha+\beta)$
$(2)^{3}=\alpha^{3}+\beta^{3}+3\left(-\frac{1}{2}\right)(2)$
$\alpha^{3}+\beta^{3}=11$
(18) Ans. b

Explanation:
By option -1, 3, 4
(19) Ans. c

Explanation:

	Grade I	Grade II	
Plant A	6	3	≤ 120
Plant B	4	10	≤ 180

$6 x+3 y \leq 120$
$4 x+10 y \leq 180$
(20) Ans. c

Explanation:
$\mathrm{AXB}=\{(2,4),(2,5),(3,4),(3,5)\}$
$B \times C=\{(4,5),(4,6)(5,5)(5,6)\}$
$(A \times B) \cup(B X C)=\{(2,4),(2,5),(3,4),(3,5),(4,5),(4,6)(5,5)(5,6)\}$
(21) Ans. d

Explanation:
$B^{2}=\left[\begin{array}{ll}1 & 1 \\ 8 & 3\end{array}\right] X\left[\begin{array}{ll}1 & 1 \\ 8 & 3\end{array}\right]$
$=\left[\begin{array}{cc}9 & 4 \\ 32 & 17\end{array}\right]$
$B^{2}-4 B=\left[\begin{array}{cc}9 & 4 \\ 32 & 17\end{array}\right]-\left[\begin{array}{cc}4 & 4 \\ 32 & 12\end{array}\right]$
$=\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]$
(22) Ans. b

Explanation:
$\mathrm{n}(\mathrm{mUE})=\mathrm{n}(\mathrm{m})+\mathrm{n}(\mathrm{E})-\mathrm{n}(\mathrm{m} \cap \mathrm{E})$
$=40 \%+30 \%-10 \%$
= 60\%
The percentage of students who passed in both subject $=100 \%-60 \%=40 \%$.
(23) Ans. c

Explanation:
$\mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{n}$
$\frac{25}{16} P=P\left(1+\frac{r}{100}\right)^{2}$
$\left(\frac{5}{4}\right)^{2}=\left(1+\frac{r}{100}\right)^{2}$
$\frac{5}{4}=1+\frac{r}{100}$
$r=25 \%$
(24) Ans. d

Explanation:
first part $=\mathrm{x}$, second part $=2600-\mathrm{x}$
$\frac{x \times 3 \times 5}{100}=\frac{(2600-x) \times 6 \times 4}{100}$
$15 x=62,400-24 x$
$39 x=62,400$
$X=1,600$
Second part $=2,600-1,600$
$=$ Rs. 1,000
(25) Ans. c

Explanation:
Let the ages of A and B are $5 x$ and $7 x$
$5 x+9=2(7 x-9)$
$5 x+9=14 x-18$

$$
x=3
$$

The present age of $B=7 x=7 \times 3=21$ years.
(26) Ans. c

Explanation:
Product of extreme terms = product of mean terms
$(23-x)(78-x)=(30-x)(57-x)$

$$
x=6
$$

(27) Ans. c

Explanation:
$A=P\left(1+\frac{5}{100}\right)^{n}$
$A=P\left(\frac{21}{20}\right)^{n}$
$\frac{P}{A}=\left(\frac{20}{21}\right)^{n}$
(28) Ans. a

Explanation:
$A=5 B, A=3 C$
$A+B+C=1380$
$A+\frac{A}{5}+\frac{A}{3}=1380$
$A=900$
$A=3 C$
$900=3 C$
$\mathrm{C}=300$
(29) Ans. d

Explanation:
No. of different ways can be failed $=2^{4}-1$
(30) Ans. a

Explanation:
$\frac{4 a^{\frac{1}{2+\frac{2}{3}-\frac{7}{3}}}}{3 a^{-\frac{5}{3}+\frac{3}{2}}}=\frac{4}{3} a^{-1}=\frac{4}{3} X \frac{1}{4}=\frac{1}{3}$
(31) Ans. c

Explanation:
$x^{(a+b)\left(a^{2}+a b+b^{2}\right)} x^{(b+c)\left(b^{2}-b c+c^{2}\right)} x^{\left(b^{2}-b c+c^{2}\right)} x^{(c+a)\left(c^{2}-a c+a^{2}\right)}$
$=x^{a^{3}+b^{3}} \cdot x^{b^{3}+c^{3}} \cdot x^{c^{3}+a^{3}}$
$=x^{2\left(a^{3}+b^{3}+c^{3}\right)}$
(32) Ans. a

Explanation:
$\log _{t}^{a}+\log _{t}^{b}+\log _{t}^{c}=\log _{t}^{z}$
$\log _{t}^{(a b c))}=\log _{t}^{z}$
Z =abc
(33) Ans. b

Explanation:
$x^{2 a-3} y^{2 a}=x^{6-a} y^{5 a}$
$x^{3 a-9}=y^{3 a}$
Taking logarithm
(3a-9) $\log x=3 a \log y$
3alog $x-3 a \log y=9 \log x$
$a \log \frac{x}{y}=3 \log x$
(34) Ans. a

Explanation:
Present value of growing property $=\frac{R}{i-g}$

$$
\text { WHTL } O=\frac{60}{0.07-0.05}=3000
$$

(35) Ans. b

Explanation:
No. of such ways $=\frac{(n-1)!}{2}$

$$
=\frac{5!}{2}
$$

(36) Ans. a

Explanation:
If $(b+c),(c+a),(a+b)$ are in A.p.
Then $2(c+a)=b+c+a+b$
$2 b=a+c$
(37) Ans. c

Explanation:
A = 2 I
$A^{5}=32 I$
$A^{5}=16.2 I$
$A^{5}=16 A$
(38) Ans. c

Explanation:
${ }^{n} p_{r}=r!{ }^{n} c_{r}$
$2880=r!\times 120$
$r!=24$
$r=4$
(39) Ans. d

Explanation:
$f \circ g(x)=f[g(x)]$
$=f[2 x-3]$
$=(2 x-3)^{2}+3(2 x-3)+1$
$=4 x^{2}-6 x+1$
fog $(-1)=4+6+1=11$
(40) Ans. d

Explanation:
Number of permutations of n distinct objects taken r at a time when a particular object is not taken in any arrangement is ${ }^{n-1} p_{r}$
No. of arrangements $={ }^{14} \mathrm{p}_{6}$
(41) Ans. c
(42) Ans. b
(43) Ans. b
(44) Ans. d
(45) Ans. a
(46) Ans. c
(47) Ans. c
(48) Ans. c
(49) Ans. a
(50) Ans. d
(51) Ans. d
(52) Ans. c
(53) Ans. d
(54) Ans. c
(55) Ans. d
(56) Ans. b
(57) Ans. a
(58) Ans. c
(59) Ans. d
(60) Ans. b
(61) Ans. a

Explanation:
The colour of a flower is an example of An attribute
(62) Ans. b

Explanation:
The data are known to be Secondary if the data, as being already collected, are used by a different person or agency.
(63) Ans. b

Explanation:
Mutually exclusive classification is usually meant for a continuous variable
(64) Ans. C

Explanation:

$0-10$	15	
$10-20$	23	
$20-30$	27	$\mathrm{SO}=19+16=35$
$30-40$	19	
$40-50$	16	

(65) Ans. a

Explanation:
$\overline{\times}=A+\frac{\sum d x}{n}$
(66) Ans. c

Explanation:
NewMean $=\frac{\bar{x}}{\alpha}$ New Mean $=\frac{\bar{x}}{\alpha}+10$
(67) Ans. d

Explanation:
$25000=\frac{n_{1} \times 27000+n_{2} \times 17000}{n_{1}+n_{2}} S O \quad n_{1}=80 \% n_{2}=20 \%$
(68) Ans. b

Explanation:
$\overline{\times} \operatorname{com}=\frac{K \overline{\times}+10 K \bar{y}}{11 K} \times \operatorname{com}=\frac{\overline{\times}+10 \bar{y}}{11}$
(69) Ans. a

Explanation:
HM is the reciprocal of the AM of reciprocal of observations.
$H . M=\frac{n}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{n}}$
(70) Ans. c

Explanation:
Suitable form of average in this case is HM because it used for average rate.
(71) Ans. a

Explanation:
$Q 2-Q 1 \Rightarrow Q 3-Q 2$
(72) Ans. b

Explanation:
$D 2=\frac{2(n+1)}{10} t h=\frac{n+1}{5}$ th So it is 20 th Percentile
(73) Ans. b

Explanation:
For ordering shoes of various sizes for resale, mode size will be more appropriate
(74) Ans. a

Explanation:
$10 \times 2.5=25$ and marks of passed is $281-25$ Avg. is $=\frac{256}{40} \Rightarrow 6.4$
(75) Ans. a

Explanation:
$\frac{15+25}{2}=20 \quad S D=\frac{\text { range }}{2}=\frac{10}{2}=5$
(76) Ans. a

Explanation:
52, 56, 68, 70, 75, 80, 82
Median $=70$

X	$\mid X-$ $M \mid$
52	18
56	14

68	2
70	0
75	5
80	10
82	12
	61

$M D=\frac{61}{7}=8.71428$
$M D C o e f f i c i e n t=\frac{8.71428}{70} \times 100$
(77) Ans. a

Explanation:
$\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$
(78) Ans. c

Explanation:
$1,2,3,4 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots \quad \mathrm{n}$ is $\sqrt{\frac{n^{2}-1}{12}}$
(79) Ans. b

Explanation:
$40 \times 100=4000-50+40=\underline{3990}=39.90$ 100
$\sigma=\sqrt{\left.\frac{\sum x^{2}}{n}-\bar{x}\right)^{2}}$
$5.1=\sqrt{\frac{\sum x^{2}}{100}-1600}$
$E x^{2}=162601-2500+1600=161701$
$\sigma=\sqrt{\frac{161701}{100}-1592.01}$
$\sigma=5$
(80) Ans. c

Explanation:
If events are mutually exclusive, then both events cannot occur at the same time.
(81) Ans. a

Explanation:
$P\left(A^{1}\right)=1-P(A)$

$$
\begin{array}{r}
1-3 / 8 \\
=5 / 8
\end{array}
$$

(82) Ans. a

Explanation:
$A=\frac{2}{5} \quad A^{\prime}=\frac{3}{5} \quad B=\frac{7}{10} \quad B^{\prime}=\frac{3}{10}$
$A B^{\prime}+B A^{\prime}$
$\frac{2}{5} \times \frac{3}{10}+7 / 10 \times \frac{3}{5} \quad$ SO $\quad \frac{6}{50}+\frac{21}{50}=\frac{27}{50}$
(83) Ans. a

Explanation:
$(2,3)(3,2)(1,4)(4,1) \quad$ SO $\frac{4}{36}=\frac{1}{9}$
(84) Ans. a

Explanation:
$\frac{13}{52} \times \frac{12}{51}=\frac{1}{17}$
(85) Ans. c

Explanation:
$\frac{5 c_{2}}{7 c_{2}}=\frac{10}{21}$
(86) Ans. c

Explanation:
$\mathrm{P}=2$
$\mathrm{P}=2(1-\mathrm{P})$
$\mathrm{P}=2-2 \mathrm{P}$
$3 \mathrm{P}=2$
$\mathrm{P}=2 / 3$
$\mathrm{q}=\frac{1}{3}$
${ }_{3}^{5}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{2}$
$=\frac{80}{243}$
(87) Ans. a

Explanation:
$A=\frac{1}{5} \quad A=\frac{4}{5}$
(88) Ans. b

Explanation:

X	P	$P X$
5	$1 / 3$	$5 / 3$
6	$1 / 4$	$6 / 4$
7	$5 / 12$	$35 / 12$

$$
\begin{aligned}
& \frac{5}{3}+\frac{6}{4}+\frac{35}{12} \\
& \frac{20+18+35}{12}=6.08
\end{aligned}
$$

(89) Ans. c

Explanation:

X	P	$P X$
1	$1 / 3$	$1 / 3$
2	$1 / 3$	$2 / 3$
3	$1 / 3$	$3 / 3$

$\frac{1}{3}+\frac{2}{3}+\frac{3}{3}$
$=\frac{6}{3}=2$
(90) Ans. c

Explanation:
$\beta(n, \rho)$ is symmetrical when $\rho=0.5$ or $q=0.5$
(91) Ans. b

Explanation:
$4_{C_{0}} p^{0} q^{4}=\frac{16}{81}$
$q=\frac{2}{3} \quad p=\frac{1}{3}$
$4_{C_{4}}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{0}=\frac{1}{81}$
(92) Ans. d

Explanation:
$m=150 \times \frac{2}{100}=3 \quad p($ more than 2$)=1-\frac{e^{-3} 3^{0}}{0!}-\frac{e^{-3} 3^{1}}{1!}-\frac{e^{-3} 3^{2}}{2!}$
$=1-\frac{e^{-3} 3^{0}}{0!}-\frac{e^{-3} 3^{1}}{1!}-\frac{e^{-3} 3^{2}}{2!}=0.58$
(93) Ans. c

Explanation:
$\mu=0 \quad \sigma=1$
(94) Ans. c

Explanation:
The normal curve is symmetrical
(95) Ans. c

Explanation:
Because of the symmetry of Normal distribution the median and the mode have the same value as that of the mean
(96) Ans. c

Explanation :
The symbol $\phi(a)$ indicates the area of the standard normal curve between $-\infty$ To a
(97) Ans. d

Explanation:
If $X \& Y$ are two independent normal variates with means $\mu_{1} \& \mu_{2}$ and standard deviations $\sigma 1$
$\& \sigma 2$ respectively, then $X+Y$ follows Means $=\mu_{1}+\mu_{2}, S . D=\sqrt{\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}}$
(98) Ans. b

Explanation:
In semi averages method, we decide the data into two equal parts
(99) Ans. b

Explanation:
Depression in business is cyclical
(100) Ans. b

Explanation:
The multiplicative time series model is $\mathrm{Y}=\mathrm{T} \times \mathrm{S} \times \mathrm{C} \times \mathrm{I}$

