BATCH: GCF-1 to GCF-7, SCF-1 to SCF3, VCF-1 to 3timing: 3 Hours Test Booklet No.- 110011 DATE: 04.10.2018

MAXIMUM MARKS: 100
PAPER: BUSINESS MATHEMATICS, REASONING \& STATISTICS

1. Ans. a

Explanation:
From (i) equation, $b x+a y=2 a b$
From (ii) equation, $a x-b y=a^{2}-b^{2}$
Multiply eqn (i) by a and $e q^{n}$ (ii) by b, we get

$$
\begin{equation*}
a b x+a^{2} y=2 a^{2} b \tag{iii}
\end{equation*}
$$

and $a b x-b^{2} y=a^{2} b-b^{3}$
Subtracting (iii) and (iv), $b^{2} y+a^{2} y=b^{3}+a^{2} b$

$$
\begin{aligned}
& \Rightarrow \mathrm{y}\left(\mathrm{~b}^{2}+\mathrm{a}^{2}\right)=\mathrm{b}\left(\mathrm{~b}^{2}+\mathrm{a}^{2}\right) \\
& \Rightarrow \mathrm{y}=\mathrm{b}
\end{aligned}
$$

Putting $y=b$ in the equation (i)

$$
b x+a(b)=2 a b
$$

$$
\Rightarrow \mathrm{bx}=\mathrm{ab} \Rightarrow \mathrm{x}=\mathrm{a}
$$

2 Ans.c
Explanation:
$\log _{8} m+\log _{8} 2=\frac{2}{3}$
$\log _{8}(2 m)=\frac{2}{3}$
$(8)^{\frac{2}{3}}=2 \mathrm{~m}$
$\left(2^{3}\right)^{\frac{2}{3}}=2 \mathrm{~m}$
$(2)^{2}=2 \mathrm{~m}$
$4=2 \mathrm{~m}$
$2=m$
3 Ans: c
Explanation:
Let width of the rectangle is x, then length $=5+2 x$
Given that Area of rectangle $=75$
Length x width $=75$
$(5+2 x) \times x=75$
$2 x^{2}+5 x-75=0$
$(2 x+15)(x-5)=0$
$\mathrm{x}=5, \frac{-15}{2}\left[x \neq \frac{-15}{2}\right]$
Length $=2 x+5$

$$
=2(5)+5=15 \text { units }
$$

4 Ans. b
Explanation:
Given equation is $3 x^{2}+(5 m-2) x+m=0$
Sum of the roots $=\frac{-(5 m-2)}{3}$
We know that if roots are reciprocal to each other then $\frac{c}{a}=1$ of $a x^{2}+b x+c=0$
So $\frac{\mathrm{m}}{3}=1 \Rightarrow \mathrm{~m}=3$
So sum of the roots $\frac{-(5 \times 3-2)}{3}=\frac{-13}{3}$
5 Ans. d
Explanation:

$$
\begin{aligned}
& \frac{\log _{9} 11}{\log _{5} 13}-\frac{\log _{3} 11}{\log _{\sqrt{5}} 13} \\
& \Rightarrow \frac{\log _{(3)^{2}} 11}{\log _{(\sqrt{5})^{2}} 13}-\frac{\log _{3} 11}{\log _{\sqrt{5}} 13} \\
& \Rightarrow \frac{\frac{1}{2} \cdot \log _{3} 11}{\frac{1}{2} \cdot \log _{\sqrt{5}} 13}-\frac{\log _{3} 11}{\log _{\sqrt{5}} 13} \\
& \Rightarrow \frac{\log _{3} 11}{\log _{\sqrt{5}} 13}-\frac{\log _{3} 11}{\log _{\sqrt{5}} 13} \\
& \Rightarrow 0
\end{aligned}
$$

Note $\log _{\mathrm{a}} \mathrm{n} m=\frac{1}{\mathrm{n}} \log _{\mathrm{a}} \mathrm{m}$

6 Ans. (b)
Explanation:
$+\leq$ then shaded region towards the origin.
7 Ans. d
Explanation:
Let α and β are roots of equation

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =(-2)^{2}-2(-143) \\
& =290
\end{aligned}
$$

8
Ans. (c)

Explanation :

$$
\frac{25 x}{100}+\frac{10 \times 2 x}{100}+\frac{5 \times 3 x}{100}=30
$$

: $x=50$
then the number of 5 p coins $=3 \times 50=150$

9 Ans. C
Explanation:

$$
\begin{aligned}
& =\log (1+2+3)=\log 6 \\
& =\log (1 \times 2 \times 3) \\
& =\log 1+\log 2+\log 3
\end{aligned}
$$

10 Ans. a
Explanation:
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{2}{3}, \frac{\mathrm{~B}}{\mathrm{C}}=\frac{1}{4}$
$\mathrm{A}: \mathrm{B}: \mathrm{C}=2: 3: 12$
A's share $=$ Rs. $510 \times \frac{2}{17}=$ Rs. 60

11 Ans. c
Explanation:
SI for 5 years $=1020-720$

$$
=300
$$

SI for years $=\frac{300}{5} \times 2$

$$
=\text { Rs. } 120
$$

Principal = Rs. 720 - Rs. 120
= Rs. 600
12 Ans. c
Explanation:
$\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}=2$
Using componendo\÷ndo
$\frac{\sqrt{x+1}}{\sqrt{x-1}}=3$
$\frac{x+1}{x-1}=9$
$x=\frac{5}{4}$
13 Ans. b
Explanation:

Milk $=5 \mathrm{x}$, water $=\mathrm{x}$

$$
\frac{5 x}{x+5}=\frac{5}{2}
$$

$10 \mathrm{x}=5 \mathrm{x}+25$
$\mathrm{x}=5$
The quantity of milk in the original mixture $=5 \times 5=25$ litres

14 Ans. a
Explanation:
$\mathrm{a}+\mathrm{b}=6 \mathrm{x}$
$\mathrm{b}+\mathrm{c}=7 \mathrm{x}$
$\mathrm{c}+\mathrm{a}=8 \mathrm{x}$
$2(a+b+c)=21 x$
$2(14)=21 x$
$\frac{4}{3}=x$
$\therefore \mathrm{a}+\mathrm{b}=6 \times \frac{4}{3}$
$a+b=8$
Given $\mathrm{a}+\mathrm{b}+\mathrm{c}=14$
$8+c=14$
$c=14-8$
c $=6$

15 Ans. b
Explanation:
$\sqrt{a \cdot \sqrt{\cdot b \cdot \sqrt{c \cdot \sqrt{\mathrm{~d}}}}}=\sqrt{a \cdot \sqrt{b \cdot \sqrt{c \cdot d^{1 / 2}}}}=\sqrt{a \sqrt{b \cdot c^{\frac{1}{2}} d^{\frac{1}{4}}}}=\sqrt{a \cdot b^{\frac{1}{2}} \cdot c^{\frac{1}{4}} d^{\frac{1}{8}}}$
$=\mathrm{a}^{\frac{1}{2}} \cdot \mathrm{~b}^{\frac{1}{4}} \cdot \mathrm{c}^{\frac{1}{8}} \cdot \mathrm{~d}^{\frac{1}{16}}$
16 Ans: b
Explanation:
Let the share of each nephew be Rs. x
Then , share of each daughter $=$ Rs. $4 x$; share of each son $=$ Rs. $5 x$,
So,
$5 \times 5 x+4 \times 4 x+2 \times x=8600$

$$
43 x=8600
$$

$$
x=200
$$

Share of each daughter = Rs. (4×200)
$=$ Rs. 800

17 Ans. a
Explanation:
Let number is x
Then $\mathrm{x}+\frac{1}{\mathrm{x}}=\frac{10}{3}$
$3 x^{2}-10 x+3=0$
and roots are $3, \frac{1}{3}$
and square of the numbers are $9, \frac{1}{9}$
18 Ans. d
Explanation:
$\frac{x+y+z}{\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}}=\frac{x+y+z}{\left(\frac{z+x+y}{x y z}\right)}=\frac{x+y+z}{1} \times \frac{x y z}{(x+y+z)}=x y z$
19 Ans. b
Explanation:
Let third proportial be T
$x^{2}-y^{2}, x-y, T$
$x^{2}-y^{2}: x-y:: x-y: T$
$(x-y)^{2}=\left(x^{2}-y^{2}\right) \times T$
$\frac{(x-y)^{2}}{x^{2}-y^{2}}=T$
$\frac{x-y}{x+y}=T$
20 Ans. c
Explanation:
$x+\frac{1}{x}=\sqrt{2} \quad$ (squaring both sides)
$\left(x+\frac{1}{x}\right)^{2}=(\sqrt{2})^{2}$
$\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}+2=2$
$x^{2}+\frac{1}{x^{2}}=0$
21 Ans. b
Explanation:
Required no. of ways $=2 \times 4 \times 3 \times 2 \times 1=48$

22 Ans. d
Explanation:
Present value $=A(1+i)^{-n}=10000 /(1+0.025)^{4}$

$$
\begin{aligned}
& =10000 /(1.025)^{4} \\
& =10000 /(1.1038) \\
& =R s .9059 .50
\end{aligned}
$$

Ans. a
Explanation:
For the lines $2 x+3 y=4$ and $4 x+6 y=7$
$\frac{2}{4}=\frac{3}{6} \neq \frac{4}{7}$
So, the given system of equation have no solution because, both lines are parallel to each other.

24 Ans. b
Explanation:
LHL = 3
RHL $=5-\mathrm{P}$
LHL $=$ RHL
$3=5-P$
$P=2$

25 Ans. a
Explanation:
Here $A=2000, \quad i=\frac{6}{100 \times 12}=0.005, n=24$
Let Rs. P be the each payment.
\therefore Amount : $\mathrm{A}=\mathrm{P}\left[\frac{(1+\mathrm{i})^{\mathrm{n}}-1}{\mathrm{i}}\right] \Rightarrow 2000=\mathrm{P}\left[\frac{(1+0.005)^{24}-1}{0.005}\right]=\mathrm{P}\left[\frac{(1.005)^{24}-1}{0.005}\right]$
$\Rightarrow \mathrm{P}=\frac{2000 \times 0.005}{(1.005)^{24}-1}$ or $\mathrm{P}=\frac{10}{1.1272-1}=\frac{10}{0.1272}=$ Rs. 78.61

26 Ans. d
Explanation:
By options putting the value $\mathrm{n}=9$
$9 \mathrm{c}_{2}-9=27$

27 Ans. c
Explanation:
37, 39, ... 119
$l=a+(n-1) d$
$119=37+(n-1)(2)$
$\mathrm{n}=42$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(a+l)=\frac{42}{2}(37+119)=3276$
28 Ans. b
Explanation:
Sum of male and female employees Can not be more than ten so option (b) shows right inequality.

29 Ans. d
Explanation :
The candidate can select 8 questions by selecting at last three from each part in the following ways:
(a) 3 questions from part A and 5 questions from part

$$
\mathrm{B}={ }^{7} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{5}=35 \text { ways }
$$

(b) 4 questions from part A and part B each

$$
\mathrm{B}={ }^{7} \mathrm{C}_{4} \mathrm{x}{ }^{5} \mathrm{C}_{4}=175 \text { ways }
$$

(c) $\quad 5$ questions from part A and questions from part

$$
\mathrm{B}={ }^{7} \mathrm{C}_{5} \mathrm{x}{ }^{5} \mathrm{C}_{3}=210 \text { ways }
$$

Hence, the total number of ways in which the candidate can select the question will be $=35+175+210=420$ ways.

30 Ans. d
Explanation:
$x^{y}=e^{x+y}$
$y \log x=x+y$
$y=\frac{x}{\log x-1}$
$\frac{d y}{d x}=\frac{\log x-2}{(\log x-1)^{2}}$
31 Ans. b
Explanation:
$\mathrm{SI}=\frac{\mathrm{prt}}{100}$
$\frac{3}{8} \mathrm{P}=\frac{\mathrm{p} \times \mathrm{rx} 25}{400}$
$r=6 \%$

32 Ans. d
Explanation:
The required no. of ways $=4!\times 3!=144$
33 Ans. b
Explanation:
$x=8^{17}$
$x=2^{51}$
$\log x=51 \log ^{2}$
$\log x=51 \times 0.3010=15.381$
Number of terms in $8^{17}=15+1=16$
34 Ans. c
Explanation:
$f o g(x)=f[g(x)]$
$=f\left(x^{2}+7\right)$
fog $(x)=2\left(x^{2}+7\right)+7$
$f \circ g(x)=2 x^{2}+21$
$\Rightarrow 2 x^{2}+21=25$
$\mathrm{x}^{2}=2$
$x= \pm \sqrt{2}$
35 Ans. b
Explanation:
$f(x)=2 x^{2}+3 x-5$
$f^{\prime}(x)=4 x+3$
$f^{\prime}(0)=3$
$\mathrm{f}^{\prime}(-1)=-1$
$f^{\prime}(0)+3 f^{\prime}(-1)=3+3(-1)=3-3=0$

36 Ans: (c)
Explanation:
$(P+Q) \times \frac{20}{100}=(P-Q) \times \frac{50}{100}$

$$
\begin{aligned}
2 P+2 Q & =5 P-5 Q \\
7 Q & =3 P \\
P: Q & =7: 3
\end{aligned}
$$

37 Ans. c
Explanation:
Let x years be the present age of the man and sum of the present ages of the two
sons be y years.
By the condition $\quad x=3 y$
and
$x+5=2(y+5+5)$
From (i) \& (ii) $\quad 3 y+5=2(y+10)$
or $3 y+5=2 y+20$
or $3 y-2 y=20-5$
or $y=15$
$\therefore x=3 \times y=3 \times 15=45$
Hence the present age of the main is 45 years.
38 Ans. c
Explanation:
Total line can be made by $10_{c_{2}}$
and $7_{C_{2}}$ lines could not be drawn because points are collinear

So Remaining $\Rightarrow 10_{\mathrm{C}_{2}}-7_{\mathrm{C}_{2}}+1$
$\Rightarrow 25$

39 Ans. b
Explanation:
Orders are $2 \times 8 ; 8 \times 2 ; 4 \times 4 ; 1 \times 16 ; 16 \times 1$.
40 Ans. b
Explanation:
$\left[\begin{array}{ccc}x+x y & 2 x+y^{2} & 3 x+y z \\ 2+3 x & 4+3 y & 6+3 z\end{array}\right]$
41 Ans. b
Explanation:
Given $\mathrm{n}_{1}=\mathrm{k}, \mathrm{n}_{2}=\mathrm{k}$
$\overline{\mathrm{x}}_{1}=16 \overline{\mathrm{x}}_{2}=10$
Combined mean
$\overline{\mathrm{x}}=\frac{\mathrm{n}_{1} \overline{\mathrm{x}}_{1}+\mathrm{n}_{2} \overline{\mathrm{x}}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
$=\frac{\mathrm{k} \times 16+\mathrm{k} \times 10}{\mathrm{k}+\mathrm{k}}=\frac{16 \mathrm{k}+20 \mathrm{k}}{3 \mathrm{k}}=\frac{36 \mathrm{k}}{3 \mathrm{k}}$
$=12$
42 Ans. a
Explanation : Sum of marks of 300 students $=300 \times 40=12000$
after replacing wrong and missing observations sum of marks =
$12000-60+66+14-41+60=12039$
Correct mean $=12039 / 300=40.13$
43 Ans. b
Explanation:
First 5 and last five observations are same in magnitude but opposite in sign. So
For given observation $\sum_{i=1}^{10} x_{i}=0$ and

$$
\begin{aligned}
& \sum_{i=1}^{10} x_{i}^{2}=2 \sum_{i=1}^{5} x^{2}=2 \times 80=160 \\
& \sigma
\end{aligned} \begin{aligned}
& \frac{\sum x^{2}}{n}-\left(\frac{\sum x^{2}}{n}\right) \\
&=\sqrt{\frac{160}{10}-\left(\frac{0}{10}\right)^{2}} \\
&=4
\end{aligned}
$$

44 Ans.d

Explanation:
Coefficient of variation $=\frac{\text { S.D. }}{\bar{x}} \times 100$
$50=\frac{\text { S.D. }}{10} \times 100$
S.D. $=\frac{50 \times 10}{100}=5$

Variance $=(\text { S.D. })^{2}=5^{2}=25$

45 Ans. b
Explanation:

$$
\mathrm{L}-\mathrm{S}
$$

Coefficient of range $=\mathrm{L}+\mathrm{S}$
Where $\mathrm{L} \rightarrow$ for largest value
$S \rightarrow$ for smallest value
Coefficient of range $=\frac{40-10}{40+10}=\frac{30}{50}=\frac{3}{5}$
46 Ans. a
Explanation:
Arrange the data in ascending order:
$x / 5, x / 3, x / 2, x$
$\mathrm{M}=$ Simple Average of two middle terms
$M=\frac{\frac{x}{2}+\frac{x}{3}}{2}=10$
$\frac{x}{2}+\frac{x}{3}=20$
$\frac{5 x}{6}=20$
$x=24$
47 Ans. d
Explanation: $\sum \mathrm{x}=50 \mathrm{x} 80=4000$
After replacing correct observations $\sum \mathrm{x}=4000-28-69+82+96=4081$
Revised $\bar{x}=\frac{4081}{50}=81.62$
48 Ans. b
Explanation:
G.M. $=\left(2 \times 2^{2} \times 2^{3} \times 2^{4} \times 2^{5} \times 2^{6}\right)^{1 / 6}$
$=2^{7 / 2}$
49 Ans. d
Explanation:
Н.M. $=\frac{n}{1+3+5 \ldots . .2 n-1}=\frac{1}{n}$

50 Ans. c
Explanation: $b_{y x}=-5 / 2$

51 Ans. b
Explanation:

$$
\begin{gathered}
r_{R}=1-\frac{6 \sum \mathrm{~d}^{2}}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)} \\
0.143=1-\frac{6 \times 48}{7(48)}=0.143
\end{gathered}
$$

52 Ans. b
Explanation:
$F=\sqrt{\mathrm{LXP}}$
$150^{2}=144 \times P$
$P=156.25$
53 Ans. b
Explanation:
Revised salary $=\frac{200}{110} \times 325=590.90$
It means worker is in loss.
54 Ans. c
Explanation:
Spearman's rank correlation coefficient is used for qualitative data

55 Ans. d
Explanation : Regression coefficient are independent of change of origin but not scale (As per Fundamental Principle)

56 Ans. c
Explanation :
$b_{y x}=0.5, b_{x y}=B, r=0.1$
$r=\sqrt{b_{x y} \times b_{y x}}$
$0.1=\sqrt{0.5 \times B}$
$0.5 \mathrm{~B}=0.01$
$B=\frac{0.01}{}=0.02$
Five @obmetitors in a contest are ranked by two judges in the order 1, 2, 3, 4, 5 and 5,4,3,2,1 resp
(a) -0.5
57. Ans. b

Explanation: if rank is in reverse order then spearman rank correlation coefficient is 1.

58 Ans. a
Explanation:
Purchasing power of money is is inversely proportional to the price index.
59 Ans. c
Explanation:

Commodity	R	W	RW
I	110	3	330
II	120	3	360
III	70	1	70
Total		7	760

Weighted Price Index $=\frac{\Sigma R W}{\Sigma W}=\frac{760}{7}=108.5$

60 Ans. c
Explanation:
$r^{2}=b_{y x} \times b_{x y}$
$r= \pm \sqrt{b_{y x} \times b_{x y}}$
61 Ans. C
Explanation:
Regression coefficients are independent of the change of origin but not of scale.
andb ${ }_{y x}>1$ then $b_{x y}<1$
62 Ans. a
Explanation:

$$
\begin{gathered}
r=\sqrt{b_{x y} \times b_{y x}} \\
\frac{0.5625 \times 4}{5}=b_{x y} \\
b_{x y}=0.45
\end{gathered}
$$

$0.75=\sqrt{\frac{5}{4} x b_{x y}}$

63 Ans. b
Explanation:

$$
\begin{aligned}
& \frac{\mathrm{L}}{\mathrm{P}}=\frac{\frac{\Sigma \mathrm{p}_{1} \mathrm{q}_{0}}{\frac{\Sigma \mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{1} \mathrm{q}_{1}}} \frac{\frac{20+5 \mathrm{x}}{\Sigma \mathrm{p}_{0} \mathrm{q}_{1}}}{\frac{15}{15}}=\frac{28}{\frac{10+2 \mathrm{x}}{7}}=\frac{27}{27}}{=\frac{140+35 \mathrm{x}}{150+30 \mathrm{x}}=\frac{28}{27}} \begin{array}{l}
\mathrm{x}=4
\end{array} \\
& \hline
\end{aligned}
$$

64 Ans. c
Explanation:
two or more related time series are expressed in different units, we usemultiple axis chart

65 Ans. b
Explanation :
Angle Corresponding to North America
$=\frac{11.7}{82} \times 66$
$=9.4 \mathrm{~km}^{2}$

66 Ans. c
Explanation:
Hidden trend, if any, in the data can be noticed inDiagrammatic representation.

67 Ans. b
Explanation : $\overline{\mathrm{x}}=1500, \mathrm{SD}=400$
After $1^{\text {st }}$ year
Mean $=1500+20 \%$ of $1500=1800$
$S D=400+20 \%$ of $400=480$
After $2^{\text {nd }}$ year
Mean $=1800+100=1900$
SD $=480$ (no change)
68 Ans. b
Explanation:
$\frac{\sigma_{x}}{\sigma_{y}}=\sqrt{\frac{b_{x y}}{b_{y x}}}$
$=\sqrt{\frac{8}{15}}$
$=0.73$

69 Ans. a
Explanation:
Chronological classification is also known as time series data.

70 Ans. b
Explanation:
We Know Q.D $=\frac{2}{3} S . D$
Q.D.<S.D

71 Ans. c
Explanation : Average age of 10 students $=20 \mathrm{yrs}$
The sum of age of 10 students $=20 \times 10=200 \mathrm{yrs}$

If two boys are increased
The total no of students $=10+2=12$
And average increased by 4 yrs
Then new average $=20+4=24$
The sum of age of 12 student $=24 \times 12=288$
The sum of age of two boys $=288-200=88$
Average age of two boys $=\frac{88}{2}=44$
72 Ans. c
Explanation:
Given: Mode - Mean = 63
We know the empirical relationship between mean, Median \& Mode i.e.
(Mode - Mean) = 3 (Median - Mean)
Median - Mean $=\frac{63}{3}=21$
73 Ans. a
Explanation:
If age increases premium of insurance increases.
74 Ans. a
Explanation:
$b_{v u}=\frac{p}{q} \times b_{y x}$
$=\frac{-3}{2} \times-1.2=1.8$

Ans. C
Explanation : Event A: Person aged 50 years will remain alive after 20 years
Event B: Person aged 60 years will remain alive after 20 years
$\therefore P(A)=\frac{5}{9+5}=\frac{5}{14}$ and $P(B)=\frac{6}{8+6}=\frac{6}{14}$
$\therefore P(A \cup B)=\frac{5}{14}+\frac{6}{14}-\frac{5}{14} \times \frac{6}{14}=\frac{31}{49}$

76 Ans. c
Explanation:
$-\infty$ to ∞ area $=1$.
77 Ans. c
Explanation:

$$
\begin{gathered}
\mathrm{np}-\mathrm{npq}=\frac{5}{9} \\
p=\frac{1}{3}, q=\frac{2}{3}
\end{gathered}
$$

Distribution is $\left(\frac{2}{3}+\frac{1}{3}\right)^{5}$

Ans. b
Explanation : The index 1970 on base 1960 will be $=\frac{150 \times 200}{100}=300$

Ans. a
Explanation:
Largest angle $\quad=\frac{32}{90} \times 360=128^{0}$
Smallest angle $\quad=\frac{17}{90} \times 360=68^{\circ}$
Difference $=60^{\circ}$
81 Ans. a
Explanation:
$54+16=70$
Ans. a
Explanation:
$430+130=560$
Ans. a
Explanation:
$285+60=345$.
84 Ans. a
Explanation:
$7^{3}-1=342$
Ans. b
Explanation:
$25+41=66$
Ans. a
Ans. b
Ans. b
Ans. a
Ans. a

91 Ans. a
92 Ans. a
93 Ans. c
94 Ans. d
95 Ans. d
96 Ans. d
97 Ans. a
98 Ans. d
99 Ans. a
100 Ans. b
