PAPER 2 : COSTING

Answer 1:

(a) Process A Account

Pr|r|r|

Dr.	Rs.	Cr.	
	40,000	By Process B A/c (Transfer to Process B)	$1,20,000$
To Materials	40,000		
To Labour	To Overheads	16,000	
To Profit (20\% of transfer price, i.e., 25% of cost)	96,000		
	24,000		$1,20,000$
	$1,20,000$		

Process B Account

Cr.

	Rs.		Rs.
To Process A A/c	1,20,000	By Finished Stock A/c	2,88,000
(Transferred from Process A)		(Transfer to finished stock)	
To Labour	56,000		
To Overheads	40,000		
	2,16,000		
To Profit (25% of transfer			
price, i.e., 33.33\% of cost)	2,88,000		2,88,000

Statement of Total Profit

	Rs.
Profit from Process A	
Profit from Process B	
Profit on Sales (Rs. 4,00,000 - Rs. $2,88,000$)	24,000
Total Profit	72,000

(b) Let x be the cost of material and y be the normal rate of wage/hour

	Worker A (Rs.)	Worker B (Rs.)
Material cost	x	x
Labour wages	90 y	100 y
Bonus	Rowan system	Halsey system
	Time saved \times hour worked \times rate	Hours saved $\times 50 \% \times$ rate
	$\frac{30}{120} \times 90 \times y=22.5 y$	$20 \times \frac{1}{2} \times y \times=10 y$
Overheads	$90 \times$ Rs. $50=4,500$	$100 \times$ Rs. $50=5,000$
Factory cost	$\begin{aligned} & x+112.5 y+4,500=80,200 \\ & \therefore x+112.5 y=75,700 \ldots \ldots \text { (1) } \end{aligned}$	$\begin{aligned} & x+110 y+5,000=79,400 \\ & \therefore x+110 y=74,400 \ldots \ldots \text { (2) } \end{aligned}$

Solving (1) and (2) we get $x=$ Rs.17,200 and $y=$ Rs. 520
(i) Normal rate of wages is Rs. 520 per hour. $\mathbf{~ 1 1 ~}_{1 / 2}^{2}$
(ii) Cost of materials = Rs. 17,200.]1 $1 / 2$
(iii) Comparative Statement of factory cost

	Worker A (Rs.)	Worker B (Rs.)
Material cost	17,200	17,200
wages	$46,800(900 \times$ Rs. 520$)$	$52,000(100 \times$ Rs. 520$)$
Bonus	$11,700\left(\frac{30}{120} \times 90 \times 520\right)$	$\left(20 \times \frac{1}{2} \times 520\right)$
	$4,500(90 \times$ Rs. 50$)$	$5,000(100 \times$ Rs. 50$)$
Overheads	$80,200[\mathbf{1 M}]$	$79,400[\mathbf{1 M}]$
Factory cost		

(c) (i) Statement Showing "Activity Rate"

Activity	Activity Cost [a] (Rs.)	Activity Driver	No. of Units of Activity Driver [b]	Activity Rate [a] / [b] (Rs.)
Providing ATM Service	$1,00,000$	No. of ATM Transactions	$2,00,000$	0.50
Computer Processing	$10,00,000$	No. of Computer Transactions	$25,00,000$	0.40
Issuing Statements	$8,00,000$	No. of Statements	$5,00,000$	1.60
Customer Inquiries	$3,60,000$	Telephone Minutes	$6,00,000$	0.60

(ii) Statement Showing "Cost of Product"

Activity	Checking Accounts (Rs.)	Personal Loans	Gold Visa (Rs.)
Providing ATM Service	$\begin{array}{r} 90,000 \\ (1,80,000 \mathrm{tr} \times \mathrm{Rs} . \\ 0.50) \end{array}$		$\begin{array}{r} 10,000 \\ (20,000 \text { tr. } \times \text { Rs. } \\ 0.50) \end{array}$
Computer Processing	$8,00,000$ $(20,00,000 \mathrm{tr} . \times \mathrm{Rs}$. $0.40)$	$\begin{array}{r} 80,000 \\ (2,00,000 \text { tr. } \times \text { Rs. } \\ 0.40) \end{array}$	$\begin{array}{r} 1,20,000 \\ (3,00,000 \text { tr. } \times \text { Rs. } \\ 0.40) \end{array}$
Issuing Statements	$\begin{array}{r} 4,80,000 \\ (3,00,000 \text { st. } \times \text { Rs. } \\ 1.60) \end{array}$	80,000 $(50,000 \mathrm{st} \times \mathrm{Rs}$. $1.60)$	$2,40,000$ $(1,50,000$ st. \times Rs. 1.60$)$
Customer Inquiries	$\begin{array}{r} 2,10,000 \\ (3,50,000 \mathrm{~min} . \times \mathrm{Rs} . \\ 0.60) \end{array}$	$\begin{array}{r} 54,000 \\ (90,000 \mathrm{~min} \times \mathrm{Rs} . \\ 0.60) \end{array}$	96,000 $(1,60,000 \mathrm{~min} . \times$ Rs. 0.60$)$
Total Cost [a]	Rs. 15,80,000	Rs. 2,14,000	Rs. 4,66,000
Units of Product [b]	30,000	5,000	10,000
Cost of each Product [a] / [b]	$\begin{aligned} & 52.67 \\ & {[1 \mathrm{M}]} \end{aligned}$	$\begin{gathered} 42.80 \\ \text { [1M] } \end{gathered}$	$\begin{aligned} & 46.60 \\ & \text { [1M1 } \end{aligned}$

(d) Labour turnover rate

It comprises of computation of labour turnover by using following methods:
(i) Separation Method:

$$
\begin{aligned}
& =\frac{\text { No. of workers let }+ \text { No. of workers discharged }}{\text { Averagenumber of workers }} \times 100 \\
& =\frac{(80+320)}{(7,600+8,400) \div 2} \times 100=\frac{400}{8,000} \times 100=5 \%
\end{aligned}
$$

(ii) Replacement Method:

$$
=\frac{\text { No. of workers replaced }}{\text { Average number of workers }} \times 100=\frac{300}{8,000} \times 100=3.75 \%
$$

(iii) New Recruitment:

$$
\begin{aligned}
& =\frac{\text { No. of workers newly recruited }}{\text { Average number of workers }} \times 100 \\
& =\frac{\text { No. Recruitments }- \text { No. of Replacements }}{\text { Average number of workers }} \times 100 \\
& =\frac{1,200-300}{8,000} \times 100=\frac{900}{8,000}=100=11.25 \%
\end{aligned}
$$

Flux Method:

$$
\begin{aligned}
& =\frac{\text { No. of separations }+ \text { No. of accessions }}{\text { Averagenumber of workers }} \times 100 \\
& =\frac{(400+1200)}{(7600+8400) \div 2} \times 100=\frac{1,600}{8,000} \times 100=20 \%
\end{aligned}
$$

(5 Marks)

Answer 2:

(a) WorkingNotes:
(1)
ComputationofAnnualconsumption\&AnnualDemandforrawmate
rial'Dee':

Salesforecastoftheproduct'Exe'	10,000 units
Less:Opening stockof 'Exe'	900 units
Freshunitsof'Exe'tobeproduced	$9,100 \mathrm{units}$
Rawmaterialrequiredtoproduce9,100unitsof	$18,200 \mathrm{~kg}$.
'Exe' (9,100units×2kg.)	
Less:OpeningStockof'Dee'	$1,000 \mathrm{~kg}$.
Annualdemandforrawmaterial'Dee'	$17,200 \mathrm{~kg}$.

(2) ComputationofEconomicOrder Quantity(EOQ):

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\frac{2 \times \text { Annual demand of 'Dee' } \times \text { Ordering Cost }}{\text { Carrying costper unit per annum }}} \\
& =\sqrt{\frac{2 \times 17,200 \mathrm{~kg} \cdot \times \mathrm{Rs} .720}{\text { Rs. } 125 \times 13.76 \%}}=\sqrt{\frac{2 \times 17,200 \mathrm{~kg} . \times \mathrm{Rs} .720}{\mathrm{Rs} .17 .2}}=1,200 \mathrm{Kg} .
\end{aligned}
$$

(3) Re-Orderlevel:
$=$ (Maximumconsumptionperday \times Maximumleadtime)
$=\left\{\left(\frac{\text { Annual Consumption of 'Dee' }}{364 \text { day }}+20 \mathrm{~kg}.\right) \times 8\right.$ days $\}$
$=\left\{\left(\frac{18,200 \mathrm{~kg} .}{364 \text { days }}+20 \mathrm{~kg}.\right) \times 8\right.$ days $\}=560 \mathrm{Kg}$.
(4) Minimum consumption per day of raw material 'Dee':

Average Consumption per day $\quad=50 \mathrm{Kg}$
Hence, Maximum Consumption per day $=50 \mathrm{Kg}+20 \mathrm{Kg}=70 \mathrm{Kg}$ So,Minimumconsumptionperdaywillbe
Average Consumption $=\frac{\text { Min. consumption }+ \text { Max. consumption }}{2}$
Or, $\quad 50 \mathrm{~kg} . \quad=\frac{\text { Min. consumption }+70 \mathrm{~kg} .}{2}$

Or, Min. consumption $=100 \mathrm{~kg}-70 \mathrm{~kg} .=30 \mathrm{~kg}$.
(i) Re-order Quantity:

EOQ $-200 \mathrm{~kg} .=1,200 \mathrm{~kg} .-200 \mathrm{~kg} .=1,000 \mathrm{~kg}$.
(ii) Maximum stock level:
$=$ Re-order level + Re-order Quantity - (Min. consumption per day \times Min. lead time)
$=560 \mathrm{~kg} .+1,000 \mathrm{~kg} .-(30 \mathrm{~kg} . \times 4$ days $)=1,560 \mathrm{~kg} .-120 \mathrm{~kg}$.
$=1,440 \mathrm{~kg}$.
(iii) Minimum stock level:
$=$ Re-order level - (Average consumption per day \times Average lead time)
$=560 \mathrm{~kg} .-(50 \mathrm{~kg} . \times 6$ days $)=260 \mathrm{~kg}$.
(iv) Impact on the profitability of the company by not ordering the EOQ.

		When purchasing the ROQ	When purchasing the EOQ
I	Order quantity	$1,000 \mathrm{~kg}$.	$1,200 \mathrm{~kg}$.
II	No. of orders a year	$\frac{17,200 \mathrm{~kg} .}{1,000 \mathrm{~kg} .}=17.2$ or18 order	$\frac{17,200 \mathrm{~kg}}{1,200 \mathrm{~kg}}=14.33$ or15 orders
III	Ordering Cost	18 orders \times Rs. $720=$ Rs. 12,960	15 orders \times Rs. $720=$ Rs. 10,800
IV	Average	$\frac{1,000 \mathrm{~kg}}{2}=500 \mathrm{~kg}$.	$\frac{1,000 \mathrm{~kg}}{2}=600 \mathrm{~kg}$. Inventory
V	Carrying Cost	$500 \mathrm{~kg} \times$ Rs. $17.2=$ Rs. 8,600	$600 \mathrm{~kg} \times$ Rs. 17.2 $=$ Rs. 10,320
VI	Total Cost	Rs. 21,560	Rs. 21,120

ExtraCostincurredduetonotorderingEOQ=Rs.21,560-
Rs. $21,120=$ Rs. 440
(10 Marks)
(b) Sales Volume 50,000 Units

Computation of existing contribution

Particulars	Per Unit (Rs.)	Total (Rs. in Lakhs)
Sales	3,400	1,700
Fixed Cost	1,700	850
Profit	300	150
Contribution	2,000	1,000
Variable Cost	1,400	700

(i) Break even sales in units $=\frac{\text { Fixed Cost }}{\text { Contribution per unit }}=\frac{8,50,00,000}{2,000}=42,500$ units Break even sales in rupees $=42,500$ units \times Rs. $3,400=$ Rs. 1,445 lakhs

OR
P / V Ratio $=\frac{2,000}{3,400} \times 100=58.82 \%$
B.E.P (in rupees) $=\frac{\text { Fixed Cost }}{\text { P/V Ratio }}=\frac{8,50,00,00}{58.82 \%}=$ Rs. 1,445 lakhs (approx.)
(ii) Number of units sold to achieve a target profit of Rs. 350 lakhs:

Desired Contribution = Fixed Cost + Target Profit
$=850$ lakhs +350 lakhs
$=1,200$ lakhs
Number of units to be sold $=\frac{\text { Desired Contribution }}{\text { Contribution per unit }}=\frac{12,00,00,000}{2,000}$
$=60,000$ units
(iii) Profit if selling price is increased by 15% and sales volume drops by 10%

Existing Selling Price per unit $=$ Rs. 3,400
Revised selling price per unit $=$ Rs. 3,400 $\times 115 \%=$ Rs. 3,910
Existing Sales Volume $=50,000$ units
Revised sales volume $=50,000$ units -10% of $50,000=45,000$ units.
Statement of profit at sales volume of 45,000 units @ Rs. 3,910 per unit

Particulars	Per Unit (Rs.)	Total (Rs. in Lakhs)
Sales	$3,910.00$	$1,759.50$
Less: Variable Costs	$(1,400.00)$	(630.00)
Contribution	$2,510.00$	$1,129.50$
Less: Fixed Cost		(850.00)
		279.50

(iv) Volume to be achieved to earn target profit of Rs. 350 lakhs with revised selling price and reduction of 8% in variable costs and Rs. 85 lakhs in fixed
cost.
Revised selling price per unit = Rs. 3,910
Variable costs per unit existing = Rs. 1,400
Revised Variable Costs
Reduction of 8% in variable costs $=$ Rs. $1,400-8 \%$ of 1,400
=Rs. 1,400-Rs. 112
= Rs. 1,288
Total Fixed Cost (existing) = Rs. 850 lakhs
Reduction in fixed cost $=$ Rs. 85 lakhs
Revised fixed cost $=$ Rs. 850 lakhs - Rs. 85 lakhs $=$ Rs. 765 lakhs
Revised Contribution (unit) = Revised selling price per unit - Revised Variable
Costs per units
Revised Contribution per unit = Rs. 3,910-Rs. 1,288 = Rs. 2,622
Desired Contribution $=$ Revised Fixed Cost + Target Profit

$$
=\text { Rs. } 765 \text { lakhs + Rs. } 350 \text { lakhs= Rs.1, } 115 \text { lakhs }
$$

No. of units to be sold $=\frac{\text { Desired Contribution }}{\text { Contribution per unit }}=\frac{1,115 \text { lakh }}{\text { Rs. } 2,622}=42,525$ units
Answer 3:
(a) Expense Budget of R Ltd. for the period......

		50% Capacity	60% Capacity
	Per unit	60,000 units	72,000 units
	(Rs.)	Amount (Rs.)	Amount (Rs.)

Sales (A)	200.00	1,20,00,000	1,44,00,000
Less: Variable Costs:			
- Direct Material	82.50	49,50,000	59,40,000
- Direct Wages	27.50	16,50,000	19,80,000
- Variable Overheads	27.50	16,50,000	19,80,000
- Direct Expenses	16.50	9,90,000	11,88,000
- Variable factory expenses (75\% of Rs.20p.u.)	16.50	9,90,000	11,88,000
- Variable Selling \& Dist. exp. (80\% of Rs. 10 p.u.)	8.80	5,28,000	6,33,600
Total Variable Cost (B)	$\begin{aligned} & 179.30 \\ & \{\mathbf{2 M}\} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 1,07,58,000 \\ \{\mathbf{2 M}\} \end{array} \end{aligned}$	$\begin{aligned} & \text { 1,29,09,600 } \\ & \{\mathbf{2 M}\} \end{aligned}$
Contribution (C) $=(\mathrm{A}-\mathrm{B})$	20.70	12,42,000	14,90,400
Less: Fixed Costs: - Office and Admin. exp. (100\%)	--	3,45,000	3,45,000
- Fixed factory exp. (25\%)	--	3,45,000	3,45,000
- Fixed Selling \& Dist. exp. (20\%)	--	1,38,000	1,38,000
Total Fixed Costs (D)	--	8,28,000	8,28,000
(C - D)	--	$\{\mathbf{2 M}\}^{4,14,000}$	$\{\mathbf{2 M}\}^{6,62,400}$

(10 Marks)
(b) SR - Standard labour Rate per Hour

AR - Actual labour rate per hour
SH - Standard hours
AH - Actual Hours
(i) Labour rate Variance $\quad=A H(S R-A R)$

$$
=17094(8-A R)=68,376(A)=-68,476
$$

$$
=8-A R=-4
$$

$$
=A R=R s .12
$$

(iii) Labour Efficiency Variance $=S R(S H-A H)$

$$
\begin{aligned}
& =8(18,000-17,094) \\
& =8 \times 906 \\
& =\text { Rs. } 7,248(F)
\end{aligned}
$$

\square
(10 Marks)

Answer4:

(a) Stores Ledger Control A/c

Particulars	Rs.	Particulars	(Rs.)
To Balance b/d	$1,08,000$	By Work in Process A/c	$5,76,000$

To General Ledger	$5,76,000$	By Overhead Control Adjustment A/c	72,000
To Work in Process A/c			

Deficiency assumed as normal (alternatively can be treated as abnormal loss)
Work in Process Control A/c

Particulars	Rs.	Particulars	(Rs.)
To Balance b/d	2,16,000	By Stores Ledger Control a/c	2,88,000
To Stores Ledger Control A/c	5,76,000	By Costing P/L A/c (Balancing figures being Cost of finished goods)	14,40,000
To Wages Control A/c To Overheads Control	$\begin{aligned} & 2,16,000 \\ & 8,64,000 \end{aligned}$	By Balance c/d	1,44,000
	18,72,000		18,72,000
Overheads Control A/c			
Particulars	Rs.	Particulars	(Rs.)
To Stores Ledger Control A/c	72,000	By Work in Process A/c	8,64,000
To Stores Ledger Control A/c	21,600	By Balance c/d (Under absorption)	1,65,600
To Wages Control A/c (Rs.2,52,000-	36,000		
Rs.2,16,000)			
To Gen. Ledger Adjust.	9,00,000		
A/c	10,29,600		10,29,600

(b) Working Notes:

Input output ratio of material processed in Department X = 100:90

Particulars	Quantity (Kg)
Material input	$9,00,000$
Less: Loss of material in process @ 10% of	$(90,000)$
$9,00,000 \mathrm{kgs}$	$8,10,000$
Output	

Output of department X is product ' P_{1} ' and ' P_{2} ' in the ratio of 60:40.
Output ' $P_{1}{ }^{\prime}=\frac{60 \times 8,10,000}{100}=4,86,000 \mathrm{kgs}$.
Output ' P_{2}^{\prime} ' $=\frac{40 \times 8,10,000}{100}=3,24,000 \mathrm{kgs}$.

Statement showing ratio of net sales

Product	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	Total
Quantity (kgs)	$4,86,000$	$3,24,000$	$8,10,000$
Selling price per kg (Rs.)	110.00	325.00	
Sales Value (Rs. in lakhs)	534.60	$1,053.00$	1587.60
Less: Selling Expenses (Rs. in	(28.38)	(25.00)	(53.38)
lakhs)			
		506.22	$1,028.00$
Net Sales (` in lakhs)	33%	67%	$1,534.00$

Computation of Joint Costs

Particulars	Amount (Rs. Lakhs)
Ram Material Input 9,00,000 kgs @ Rs. 95 per	855.00
kg	95.00
Direct Material	80.00
Direct Wages	100.00
Variable Overheads	75.00
Fixed Overheads	$1,205.00$
Output	

(i) Statement showing apportionment of joint costs in the ratio of net sales

Particulars	Amount (Rs. Lakhs)
Joint cost of $P_{1}-33 \%$ of Rs. 1,205 lakhs	397.65
Joint cost of $P_{2}-67 \%$ of Rs. 1,205 lakhs	807.35
Total	$1,205.00$

(ii) Statement showing profitability at split off point

Product	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	Total
Net Sales Value (Rs. in lakhs) - [A]	506.22	1028.00	1534.22
Less: Joint costs (Rs. in lakhs)	(397.65)	(807.35)	(1205.00)
	108.57	220.65	329.22

Alternative Presentation

Product	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	Total
Sales Value (Rs. in lakhs) - [A]	534.60	1053.00	1587.60
Less: Joint cots (Rs. in Lakhs)	397.65	807.35	1205.00
Selling Expenses	28.38	25.00	53.38
${ } }$	426.03	832.35	1258.38
	108.57	220.65	329.22

(iii) Statement of profitability of product ' $\mathrm{YP}_{1}{ }^{\prime}$

Product		YP $_{\mathbf{2}}$
Sales Value (Rs. in lakhs) (Refer working note) [A]		629.55
Less: Cost of P_{1}	397.65	
Cost of Department Y	128.00	
Selling Expenses of Product 'YP ${ }_{1}{ }^{\prime}$	19.00	544.65
Total Costs [B]		84.90

Working Note:

Computation of product ' YP_{1} '
Quantity of product P1 input used $=4,86,000 \mathrm{kgs}$
Input output ratio of material processed in Department $\mathrm{Y}=100: 95$

Particulars	Quantity (Kg)
Material input	$4,86,000$
Less: Loss of material in process @ 5\% of 4,86,000	(24.300)

Total	4,61,700

Sales Value of $\mathrm{YP}_{1}=4,61,700 \mathrm{kgs}$ @ Rs. 150 per $\mathrm{kg}=$ Rs. 692.55 lakhs
(iv) Determination of profitability after further processing of product P_{1} into product YP_{1} :

Particulars	(Rs. in Lakhs)
Profit of Product ' $\mathrm{YP}_{1}{ }^{\prime}\{$ refer (ii) above $\}$	108.57
Profit of Product	84.90
Decrease in profit after further processing	23.67

Based on the above profitability statement, further processing of product P_{1} into YP_{1} should not be recommended.

Answer 5:

(a) Work produced by the gang 1,800 standard labour hours, i.e., $\frac{1,800}{32+12+6}$ or 36 gang hours
Standard hours of Skilled Labour

(36×12)	1,152 hours
(36×12)	432 hours
(36×6)	216 hours
(40×28)	$\underline{1,800}$ hours
1,120 hours	

Actual hours of Skilled Labour 720 hours
Actual hours of Semi-skilled Labour (40 $\times 18$)
Actual hours of Un-skilled Labour
(40×4)
160 hours Total

2,000 hours
Skilled Labour $\quad \frac{1,152}{1,800} \times 2,000$
1,280 hours
Semi-skilled Labour $\frac{432}{1,800} \times 2,000 \quad 480$ hours
Unskilled Labour $\frac{216}{1,800} \times 2,000 \quad 240$ hours
2,000 hours
Standard Cost for Actual Output:
Skilled Labour 1,152 hours @ Rs. 30 34,560
Semi-skilled Labour
Unskilled Labour

432	hours @ Rs. 20	8,640
216	hours @ Rs. 10	$\underline{2,160}$
1,800	hours	

Actual Cost:
Skilled Labour 1,120 hours @ Rs. 34 38,080
Semi-skilled Labour 720 hours @ Rs. 23 16,560
Unskilled Labour

160	
hours @ Rs. 12	$\underline{1,920}$
$\underline{1,800}$ hours	$\underline{56,560}$

(i)

Total Labour Cost Variance
Standard Cost- Actual Cost
Rs.
Rs. 45,360-Rs. 56,560
11,200 (A)
(ii) Labour Yield Variance:
(Standard hours for Actual Output - Revised Standard hours) \times Standard Rate Skilled (1,152-1,280) ×Rs. 30

3,840 (A)
Semi-skilled (432-480) \times Rs. $20 \quad 960(A)$
Un-skilled (216-240) \times Rs. $10 \quad 240(A)$

5,040(A) $\quad 5,040(A)$
(iii) Labour Mix Variance:
(Revised Standard Hours - Actual Hours) \times Standard Rate
Skilled $\quad(1,280-1,120) \times$ Rs. $30 \quad 4,800(F)$
Semi-skilled (480-720) \times Rs. $20 \quad 4,800(A)$
Un-skilled (240-160) \times Rs. $10 \quad 800(F)$
800 (F) $800(A)$
(iv) Labour Wage Rate Variance:
(Standard Rate - Actual Rate) \times Actual Hours
Skilled (Rs. 30 -Rs. 34) $\times 1,120 \quad 4,480(A)$
Semi-skilled
(Rs. 20 -
Rs. 23) $\times 720$
2,160 (A)
Un-skilled
(Rs. 10 -
Rs. 12) $\times 160$
320 (A)
6,960 (A)
Check : Total Labour Cost Variance $=$ Yield + Mix + Rate

9,690 (A)
11,200 (A) (10 Marks)
(b) Operating cost statement of 'RP' Resort (P) Limited

Particulars	Cost per annum (Rs. in lakhs)
Staff Salaries	680.00
Room Attendant's Wages (refer W.N-3)	286.20
Lighting, Heating \& Power	30.00
Repairs, Maintenance \& Renovation	180.00
Linen	30.00
Laundry charges	24.00
Interior Decoration	75.00
Sundries	30.28
Depreciation (refer W.N- 4):	
- Building	
- Furniture \& Fixture	
-Air Conditioners	
Total	

Computation of profit: Let Rs. x be the rent for deluxe from.
Equivalent deluxe room days are 90,720 (refer W.N- 2)
Total takings = Rs. 90,720x
Profit is 25% of total takings.
Profit $=25 \%$ of Rs. $90,720 x=$ Rs. $22,680 x$
Total takings $=$ Total Cost + Profit
Rs. $90,720 x=$ Rs. $16,66,98,000$ + Rs. $22,680 x$
Rs. $90,720 x$ - Rs. $22,680 x=$ Rs. $16,66,98,000$
Rs. $68,040 x=$ Rs. $16,66,98,000$
$X=\frac{\text { Rs. } 116,66,98,000}{\text { Rs. } 68,040}=$ Rs. 2,450

Rent to be charged for Deluxe room	Rs. 2,450
Rent to be charged for Super deluxe room $=$ Rent of deluxe room $\times 2$ $=$ Rs. $2,450 \times 2$	Rs. 4,900
Rent to be charged for Luxury suite $=$ Rent of Super Deluxe room \times $1.5=$ Rs. $4,900 \times 1.5$	Rs. 7,350

Working Notes:

1. Computation of Room Occupancy

Type of Room	No. of rooms x no. of days x occupancy \%	Room days
Deluxe Room	100 rooms $x 360$ days $x \quad 90 \%$ occupancy	32,400
Super Deluxe Room Luxury Suit	60 rooms $\times 360$ days $\times 75 \%$ occupancy 40×360 days $\times 90 \%$ occupancy Total	16,200
		8,640
		84.90

2. Computation of equivalent deluxe room days:

Rent of 'super deluxe' room is to be fixed at 2 times of 'deluxe room' and luxury suite' is 3 times of 'deluxe room'. Therefore equivalent room days would be:

Type of Room	Room days	Equivalent deluxe room days
Deluxe Room	$32,400 \times 1$	32,400
Super Deluxe Room	$16,200 \times 2$	32,400
Luxury Suite	$8,640 \times 3$	25,920
	Total	90,720

(ii) Variable Costs - These costs tend to vary with the volume of activity. Any increase in the activity results in an increase in the variable cost and viceversa. For example, cost of direct labour, etc.
(iii) Semi-variable Costs - These costs contain both fixed and variable components and are thus partly affected by fluctuations in the level of activity. Examples of semi variable costs are telephone bills, gas and electricity etc.
(5 Marks)
(b) Single and Multiple Overhead Rates:

Single overhead rate: It is one single overhead absorption rate for the whole factory. It may be computed as follows:
Single overhead rate $=\frac{\text { Overhead costs for the entire factory }}{\text { Total quantity of the base selected }}$
The base can be total output, total labour hours, total machine hours, etc.
The single overhead rate may be applied in factories which produces only one major product on a continuous basis. It may also be used in factories where the work performed in each department is fairly uniform and standardized.

Multiple overhead rate: It involves computation of separate rates for each production department, service department, cost center and each product for both fixed and variable overheads. It may be computed as follows:
Multiple overhead rate =
Overhead allocated/ appportioned to each department/ cost centre or product Corresponding base
Under multiple overheads rate, jobs or products are charged with varying amount of factory overheads depending on the type and number of departments through which they pass. However, the number of overheads rate which a firm may compute would depend upon two opposing factors viz. the degree of accuracy desired and the clerical cost involved.
(c) Four different methods of costing along with their applicability to concerned industry have been discussed as below:
(i) Job Costing: The objective under this method of costing is to ascertain the cost of each job order. A job card is prepared for each job to accumulate costs. The cost of the job is determined by adding all costs against the job it has incurred. This method of costing is used in printing press, foundries and general engineering workshops, advertising etc.
(ii) Batch Costing: This system of costing is used where small components/ parts of the same kind are required to be manufactured in large quantities. Here batch of similar products is treated as a job and cost of such a job is ascertained as discussed under (1), above. If in a cycle manufacturing unit, rims are produced in batches of 2,500 units each, then the cost will be determined in relation to a batch of 2,500 units.
(iii) Contract Costing: If a job is very big and takes a long time for its completion, then method used for costing is known as Contract Costing. Here the cost of each contract is ascertained separately. It is suitable for firms engaged in the construction of bridges, roads, buildings etc.
(iv) Operating Costing: The method of Costing used in service rendering undertakings is known as operating costing. This method of costing is used in undertakings like transport, supply of water, telephone services, hospitals, nursing homes etc.
(5 Marks)
(d) In batch costing the most important problem is the determination of 'Economic Batch Quantity'
The determination of economic batch quantity involves two types of costs viz, (i) set up cost and (ii) carrying cost. With the increase in the batch size, there is an increase in the carrying cost but the set-up cost per unit of the product is reduced; this situation is reversed when the batch size is reduced. Thus there is one particular batch size for which both set up and carrying costs are minimum. This size of a batch is known as economic or optimum batch quantity.

Economic batch quantity can be determined with the help of a table, graph or mathematical formula. The mathematical formula usually used for its determination is as follows:
$E B Q=\sqrt{\frac{2 D C}{C}}$
Where,
$\mathrm{D}=$ Annual demand for the product
S = Setting up cost per batch
C = Carrying cost per unit of production per annum

$$
\text { - } 710 \mathrm{~L}-7 \mathrm{a}
$$

(5 Marks)

