171. $I=\int_{0}^{5} \frac{x^{2}}{x^{2}+(5-x)^{2}} d x$
$I=\int_{0}^{5} \frac{(5-x)^{2}}{(5-x)^{2}+(x)^{2}} d x \quad \ldots$. (ii) $[f(x)=f(a-x)]$
$2 \mathrm{I}=\int_{0}^{5} \mathrm{dx}=[\mathrm{x}]_{0}^{5}$
$2 \mathrm{I}=5$
$\mathrm{I}=5 / 2$
Ans. (d) None of these
172. $\operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{\left(2^{\mathrm{x}}-1\right)}{\sqrt{1+\mathrm{x}}-1} \cdot \frac{\sqrt{1+\mathrm{x}}+1}{\sqrt{1+\mathrm{x}}+1}$
$\operatorname{lt}_{x \rightarrow 0} \frac{\left(2^{x}-1\right)}{x} \cdot \operatorname{lt}_{x \rightarrow 0}(\sqrt{1+x}+1)$
App lt.
$\Rightarrow \log 2 \times 2 \Rightarrow 2 \log 2$
Ans. (a) $2 \log 2$
173. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{|x-1|}{x-1}$

RHL $\ldots \underset{x \rightarrow 0^{+}}{\operatorname{Lt}} \frac{(x-1)}{(x-1)}=1$
LHL $\underset{x \rightarrow 0-}{\operatorname{Lt}} \frac{-(x-1)}{(x-1)}=-1$
LHL \neq RHL $\therefore f(x)$ does not exist
(c) Does not exist
174. $f(x)=\frac{x-|x|}{x}$

RHL $\underset{x \rightarrow 0+}{\operatorname{Lt}} \frac{x-x}{x}=0$
LHL $\underset{x \rightarrow 0-}{\operatorname{Lt}} \frac{x-(-x)}{x}=\frac{2 x}{x}=2$
$\mathrm{f}(0)=2$

ANSWERS

\Rightarrow RHL \neq LHL $\neq \mathrm{f}(0) \quad \therefore \mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=0$
Ans. (b) No.
175. $\mathrm{y}=\log _{3}\left(\log _{3} \mathrm{x}\right)$
$\frac{d y}{d x}=\frac{d}{d t} \log _{3} \mathrm{t} \cdot \frac{\mathrm{d}}{\mathrm{dx}}\left(\log _{3} \mathrm{x}\right)$
$=\frac{1}{\log _{3} x \cdot \log _{3}} \cdot \frac{1}{x \cdot \log 3} \Rightarrow \frac{1}{x \cdot \frac{\log x}{\log 3} \cdot(\log 3)^{2}}$
$=\frac{1}{x \cdot \log 3 \cdot \log x}$
Ans. $(a)=\frac{1}{x \cdot \log 3 \cdot \log x}$
176. C I if calculated annually.
$\mathrm{CI}_{1}=\mathrm{P}\left[\left(1+\frac{20}{100}\right)^{2}-1\right]=\frac{11 \mathrm{P}}{25}$
CI if calculated semi annually.
$\mathrm{CI}_{2}=\mathrm{P}\left[\left(1+\frac{10}{100}\right)^{4}-1\right]=\frac{4641}{10000} \mathrm{P}$
$\therefore \quad \frac{4641 \mathrm{P}}{10000}-\frac{11 \mathrm{P}}{25}=482 \Rightarrow \frac{241 \mathrm{P}}{10000}=482$
$\therefore \quad P=20,000$
Ans. (a) Rs. 20,000
177. Value of annuity $(A)=P \quad\left[\frac{(1+i)^{n}-1}{i}\right]$
$=3000\left[\frac{(1+0.09)^{3}-1}{(0.09)}\right]$
$=9833.33$
Ans. (c) Rs. 9833.33
178. Present Value of Annuity $=\frac{10000}{(1+0.05)^{10}}$
$=$ Rs. 7724
Ans. (a) Rs. 7724
179. $\mathrm{A}=\frac{\mathrm{P}}{\mathrm{i}}\left[(1+\mathrm{i})^{\mathrm{n}}-1\right] \Rightarrow \frac{45000}{0.06}\left[(1+0.06)^{10}-1\right]$
$750000\left\lfloor(1+0.06)^{10}-1\right\rfloor$ \{Solve by taking \log \}
$A=517500$
\therefore Surplus $=517500-5,00,000$
$=17,500$
Ans. (c) Rs. 17,500
180. Present value of P (rest) of the annuity.
$\mathrm{P}=\mathrm{A}\left[\frac{1-(1+\mathrm{i})^{-\mathrm{n}}}{\mathrm{i}}\right] \Rightarrow 2000\left[\frac{1-(1+0.1)^{-5}}{(0.10)}\right]$
$\mathrm{P}=20000 \quad\left[1-(1.1)^{-5}\right]$
$\mathrm{P}=7294$ which is less than the Purchase Price.
\therefore leasing is preferable.
Ans. (a) leasing is preferable.
181. The sum of deviations of the given values from their Arithmetic Mean is 0 .

Ans. (a) Arithmetic Mean
182. The sum of squares of the deviations of the given values from their Arithmetic Mean is minimum.
Ans. (a) Arithmetic Mean
183. Which is greatly affected by the extreme values - Arithmatic mean

Ans. (a) Arithmetic Mean
184. Which is not amenable to further algebric treatment - Mode and Median

Ans. (d) Both (b) and (c)
185. $\frac{\mathrm{a}+\mathrm{b}}{2}=15 \Rightarrow \mathrm{a}+\mathrm{b}=30$
$\mathrm{b}-\mathrm{a}=4-$ (ii) [By eq (i) \& (ii)]
$2 \mathrm{~b}=34 \Rightarrow \mathrm{~b}=17$

ANSWERS

$\therefore a=13$ lower limit $=13$
Ans. (c) 13
186. Ans. (b) Refer Properties
187. Ans. (a) Refer Properties
188. Ans. (c) Refer Properties
189. Given, consumer price index in, (say), period $\mathrm{I}=120$ and consumer price index in (say), period $\mathrm{II}=215$. The wages of the worker in period I and II are given to be Rs. 1,680 and Rs. 3000 respectively. The real wages of the worker in the current period II with respect to the period I as base, are given by:
Rs. $\frac{120}{215} \times 3000=$ Rs. 1674.42
Since this wage (Rs. 1674.42) is less than the wages of the worker in the period I (Viz. Rs. 1680) the workers is not better off but worse off R. 5.58 as compared to the period I.
Ans. (a)
190. Purchasing power (P.P) of a rupee in 1994 with respect to the base period 1980 is given by
P.P. of a rupee $=\frac{100}{\text { Consumer Price Index for } 1994 \text { w.r.t. base } 1980}$
$=\quad$ Rs. $\frac{100}{250}=\operatorname{Re} .0 .40$
Ans. (a)
191. Let B_{1}, B_{2} and B_{3} be the events of drawing a boy from the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ group respectively and G_{1}, G_{2} and G_{3} be the events of drawing a girl from the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ group respectively then $\mathrm{P}\left(\begin{array}{ll}\mathrm{B} & 1\end{array}\right)=1 / 4, \mathrm{P}\left(\mathrm{B}_{2}\right)=2 / 4, \mathrm{P}\left(\mathrm{B}_{3}\right)=3 / 4$ and $\mathrm{P}\left(\mathrm{G}_{1}\right)=3 / 4, \mathrm{P}\left(\mathrm{G}_{2}\right)=2 / 4$, $\mathrm{P}\left(\mathrm{G}_{3}\right)=1 / 4$.

The required event of getting 1 girl and 2 boys in a random selection of 3 children can materialize in the following mutually exclusive cases.
(i) Girl from the first group and boys from the 2 nd and 3 rd group i.e. the event $G_{1} \cap B_{2}$ $\bigcap \mathrm{B}_{3}$
(ii) Girl from the $2^{\text {nd }}$ group and boys from $1^{\text {st }}$ and $3^{\text {rd }}$ groups, i.e. the event $B_{1} \cap \mathrm{G}_{2} \cap \mathrm{~B}_{3}$ happens.
(iii) Girl from the $3^{\text {rd }}$ group and boys from the $1^{\text {st }}$ and $2{ }^{\text {nd }}$ groups. i.e., the event $\mathrm{B}_{1} \cap \mathrm{~B}_{2}$

$$
\bigcap G_{3} \text { happens. }
$$

Hence by the addition theorem of probability, required probability ρ is given by:
$\mathrm{P}=\mathrm{P}(\mathrm{i})+\mathrm{P}(\mathrm{ii})+\mathrm{P}(\mathrm{iii})$

$$
\begin{aligned}
& =P\left(G_{1} \cap B_{2} \cap B_{3}\right)+P\left(B_{1} \cap G_{2} \cap B_{3}\right)+P\left(B_{1} \cap B_{2} \cap G_{3}\right) \\
& =P\left(G_{1}\right) P\left(B_{2}\right) P\left(B_{3}\right)+P\left(B_{1}\right) P\left(G_{2}\right) P\left(B_{3}\right)+P\left(B_{1}\right) P\left(B_{2}\right) P\left(G_{3}\right) \\
& =\frac{3}{4} \times \frac{2}{4} \times \frac{3}{4}+\frac{1}{4} \times \frac{2}{4} \times \frac{3}{4}+\frac{1}{4} \times \frac{2}{4} \times \frac{1}{4} \\
& =\frac{18+6+2}{64}=\frac{26}{64}=\frac{13}{32}
\end{aligned}
$$

Ans. (c)
192. Let $\mathrm{P}(\mathrm{A})=\mathrm{x}$
$\therefore \mathrm{P}(\mathrm{B})=\frac{3}{2} \mathrm{P}(\mathrm{A})=\frac{3}{2} \mathrm{x}$
and $\mathrm{P}(\mathrm{C})=\frac{1}{2} \mathrm{P}(\mathrm{B})=\frac{1}{2}\left(\frac{3}{2} \mathrm{x}\right)=\frac{3}{4} \mathrm{x}$
The events A, B and C are exhaustive
$\therefore \mathrm{P}(\mathrm{A}$ or B or C$)=1$
$\Rightarrow \quad \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})=1 \quad(\because \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ are mutually exclusive $)$
$x+\frac{3}{2} x+\frac{3}{4} x=1$
$x\left[\frac{4+6+3}{4}\right]=1$
$\therefore \quad x=\frac{4}{13}$
$\therefore \quad P(A)=\frac{4}{13}$
Ans. (b)
193. There are $3+4+2+1=10$ members in all and a Committee of 4 out of them can be formed in $10 \mathrm{C}_{4}$ ways. Hence exhaustive number of Cases is:
$10 \mathrm{C}_{4}=\frac{10 \times 9 \times 8 \times 7}{4!}=210$
The probability ' p ' that the Committee Consists of the doctor and at least one economist is given by
$\mathrm{p}=\mathrm{P}$ [One doctor, One economist, 2 others]
+P [One doctor, Two economist, 1 others]
+P [One doctor, Three economist]

ANSWERS

$$
\begin{aligned}
& \mathrm{p}=\frac{1 \mathrm{C}_{1} \times 3 \mathrm{C}_{1} \times 6 \mathrm{C}_{2}}{10 \mathrm{C}_{4}}+\frac{1 \mathrm{C}_{1} \times 3 \mathrm{C}_{2} \times 6 \mathrm{C}_{1}}{10 \mathrm{C}_{4}}+\frac{1 \mathrm{C}_{1} \times 3 \mathrm{C}_{3}}{10 \mathrm{C}_{4}} \\
& =\frac{1}{210}\left[\left(1 \times 3 \times \frac{6 \times 5}{2}\right)+(1 \times 3 \times 6)+(1 \times 1)\right] \\
& =\frac{1}{210}[45+18+1] \\
& =\frac{64}{210}=\frac{32}{105}=0.3048
\end{aligned}
$$

Ans. (a)
194. Let $\mathrm{A}=$ event that the company executive travel by plane.
$\therefore \quad \mathrm{P}(\mathrm{A})=2 / 3$
Let $B=$ event that the Company executive travel by train.
$\therefore \quad \mathrm{P}(\mathrm{B})=1 / 5$
Now the events A and B are mutually exclusive, because he cannot travel by plane and train at the same time.
$\therefore \quad$ The prob. of his traveling by plane or train
$=P(A \text { or } B)^{\text {Ans. (a) }}$
$=P(A)+P(B)$
$=2 / 3+1 / 5$
$=\frac{13}{15}$
Ans. (b)
195. Let A and B denote the events that the contractor will get a 'plumbing' Contract and 'Electric' Contract respectively. Then we are given:
$\mathrm{P}(\mathrm{A})=2 / 3, \mathrm{P}(\overline{\mathrm{B}})=5 / 9$
$\therefore \mathrm{P}(\mathrm{B})=1-\mathrm{P}(\overline{\mathrm{B}})=4 / 9$
and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=$ Probability that Contractor gets at least one contract.
$=4 / 5$
$\Rightarrow \quad \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=4 / 5$
$2 / 3+4 / 9-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=4 / 5$
$\Rightarrow \quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=2 / 3+4 / 9-4 / 5$

$$
\begin{aligned}
& =\frac{30+20-36}{45} \\
& =\frac{14}{45}
\end{aligned}
$$

Hence, the probability that the Contractor will get both the contracts in 14/45
Ans. (a)
196. Standard deviation $=\sigma$
$\mathrm{P}(\mathrm{x}>60)=0.05$
$\Rightarrow 1-\mathrm{P}(\mathrm{x}<60)=0.05$
$\therefore \quad \mathrm{P}(\mathrm{x} \leq 60)=0.95$
$\therefore \quad P\left[\frac{x-60}{\sigma} \leq \frac{60-50}{\sigma}\right]=0.95$
$\therefore \quad \mathrm{P}\left(\leq \frac{10}{\sigma}\right)=0.95 \Rightarrow \varphi\left(\frac{10}{\sigma}\right)=\varphi(1.64)$
$\Rightarrow \quad \sigma=\left(\frac{10}{1.64}\right)=6.7 \Rightarrow$ S.D. $=6.7$
Ans. (a) 6.7
197. $P\left(Z \geq \frac{x-10}{20}\right)=0.10$
$\therefore \quad \frac{100-\mathrm{x}}{20}=1.28$
$100-\mathrm{x}=25.6$
$\mathrm{x}=74.40$
Ans. (c) 74.40
198. $\mathrm{P}\left(\mathrm{x} \leq \frac{\mathrm{x}-100}{20}\right)=0.10$

$$
\therefore \frac{x-100}{20}=1.28
$$

$$
x=25.6+100=125.6
$$

Ans. (b) 125.6
199. Ans. (a)

$$
\text { 200. } \begin{aligned}
\mathrm{P} & =\mathrm{P}(\mathrm{x}>70) \\
= & 1-\mathrm{P}(\mathrm{x}<70)
\end{aligned}
$$

ANSWERS

$=\quad 1-\mathrm{P}\left[\frac{\mathrm{x}-65}{25} \leq \frac{70-65}{5}\right]$
$=1-\mathrm{P}(\mathrm{z}<1)$
$=10-.041$
$\mathrm{P}=0.06$
Ans. (c) 0.06

Model Test Paper - BOS/CPT - 4

151. $P=\frac{100 \mathrm{~A}}{100+\mathrm{RT}} \Rightarrow \frac{100 \times 21315}{100+0.045 \times \frac{4}{12}}$
$\mathrm{P}=21000$
Ans. (a) Rs. 21000
152. $\mathrm{I}_{1}=500 \times \frac{8}{100} \times 1=40$
$\mathrm{I}_{2}=1000 \times \frac{8}{100} \times \frac{3}{4}=60$
$\mathrm{I}_{3}=1000 \times \frac{8}{100} \times \frac{1}{2}=40$
\therefore Total Amount $=500+1000+1000+40+60+60$
$=2640$
Ans. (c) Rs. 2640
153. $2000=1200\left(1+\frac{5}{4 \times 100}\right)^{4 n}$
$5=3\left(\frac{81}{80}\right)^{4 \mathrm{n}}$ After taking log both side and solved.
$\log 5=\log 3+4 n[\log 81-\log 80]$
$\mathrm{n}=10$ years 3 months
Ans. (a) 10 years 3 months
154. $26500=20000\left(1+\frac{\mathrm{r}}{100}\right)^{4}$

After taking log and solving it
$\mathrm{r}=7.5 \%$
Ans. (c) 7.5\%
155. $\mathrm{C} \mathrm{I}=7000\left[\left(1+\frac{7}{100}\right)\left(1+\frac{8}{100}\right)\left(1+\frac{85}{100}\right)-1\right]$
$\mathrm{CI}=1776$
Ans. (c)
156. Ans. (b)
157. $\mathrm{I}_{1}=\mathrm{P} \times \frac{3}{100} \times 2=\frac{6 \mathrm{P}}{100}$
$\mathrm{I}_{2}=\mathrm{P} \times \frac{8}{100} \times 3=\frac{24 \mathrm{P}}{100}$
$\mathrm{I}_{3}=\mathrm{P} \times \frac{10}{100} \times 1=\frac{10 \mathrm{P}}{100}$
Total interest $=1520$
$\therefore \frac{40 \mathrm{P}}{100}=1520 \Rightarrow \mathrm{P}=\frac{100 \times 1520}{40}$
$\mathrm{P}=3800$
Ans. Rs. 3800 (a)
158. $\mathrm{A}=7500\left[(1+\mathrm{i})^{\mathrm{n}}\right] \quad[\mathrm{I}=0.01 \mathrm{n}=2]$
$=7500[1+0.01)^{2} \Rightarrow 7500 \times(1.01)^{2}$
$\mathrm{A}=7650.75$
Ans. (a) Rs. 7650.75
159. $512.50=\mathrm{P} \quad\left[(1+0.05)^{2}-1\right]$
$512.50=\mathrm{P} \times 0.1025$
$\therefore \mathrm{P}=5000$
Ans. (b) Rs. 5000
160. $1331=1000\left[1+\frac{\mathrm{r}}{100}\right]^{3}$

$$
\left(\frac{11}{10}\right)^{3}=\left(1+\frac{\mathrm{r}}{100}\right)^{3} \Rightarrow 1.1=1+\frac{\mathrm{r}}{100}
$$

ANSWERS

$\therefore 0.1=\mathrm{r} / 100 \Rightarrow \mathrm{r}=10 \%$
Ans. (a) 10\%
161. Range $=L-S$
$\mathrm{L}-\mathrm{S}=20 \rightarrow(\mathrm{i})$
If each item is increased by 15
Range $=(\mathrm{L}+15)-(\mathrm{S}+15)$
Range $=\mathrm{L}-\mathrm{S}=20 \quad$ [from e.g. (i)]
Ans. (a) 20
162. Range $=\mathrm{L}-\mathrm{S}$
$\therefore \quad \mathrm{L}-\mathrm{S} 20$
If each item is divided by -2
Range $=\frac{L}{-2}-\frac{S}{-2}=\frac{-1}{2}(L-S)$
Range $=\frac{-1}{2} \times 20=-10[(-)$ sign ignored $]$
Range $=10$
(because it is difference between largest and smallest data)
Ans. (b) 10
163. Ans. (a)
164. In grouped frequency distribution, if the class interval is unequal then quartile deviation is more appropriate.

Ans. (a) Q.D.
165. $\mathrm{SD}=\sqrt{\frac{\sum \mathrm{d}^{2}}{\mathrm{n}}} \Rightarrow(4)^{2}=\frac{\sum \mathrm{d}^{2}}{10} \Rightarrow \sum \mathrm{~d}^{2}=160$

If each item divided by -2
Corrected $\sum\left(\mathrm{d}^{\prime}\right)^{2}=\frac{160}{(-2)^{2}}=40$
\therefore Corrected S.D. $=\sqrt{\frac{\sum\left(\mathrm{d}^{\prime}\right)^{2}}{\mathrm{n}}}=\sqrt{\frac{40}{10}}=2$
S.D. $=2$

Ans. (a) 2
166. $\overline{\mathrm{x}}=\frac{(5+10+15 \ldots \ldots \ldots \ldots \ldots+125}{25}$
$\frac{\frac{25}{2}[2 \times 5+(25-1) 5]}{25}=\frac{130}{2}=65$
Average $=65$
Ans. (a) 65
167. a, b, c, d, e are five add integers.
average $=\frac{a+b+c+d+e}{5}=\frac{a+(a+2)+(a+4)+(a+6)+(a+8)}{5}$
$\Rightarrow(\mathrm{a}+4)$
Ans. (d) $a+4$
168. $A v=\frac{180+258+x}{3}$
$230=\frac{438+x}{3} \Rightarrow 690-438=x$
$\therefore \quad \mathrm{x}=252$ he should score 252 runs.
Ans. (d) None of these
169. $100=\frac{(x+2) 60+x .120+(x-2) 180}{(x+2)+x+x-2}$
$300 \mathrm{x}=360 \mathrm{x}-240$
$\therefore \quad 60 \mathrm{x}=240$
$\mathrm{x}=4$
Ans. (a) 4
170. $16=\frac{\sum \mathrm{x}}{25} \Rightarrow \sum \mathrm{x}=400$
$15=\frac{\sum \mathrm{x}^{1}}{24} \Rightarrow \sum \mathrm{x}^{1}=360 \therefore$ Age of Teacher $=400-360=40$
Ans. (b) 40 Years
171. Ans. (b) Refer Properties
172. Ans. (b) Refer Properties
173. Given two regression lines are

ANSWERS

$$
\begin{aligned}
& 3 x+2 y=26 \rightarrow(1) \\
& 6 x+y=31 \rightarrow(2)
\end{aligned}
$$

Since the two lines of regression intersect at the point (\bar{x}, \bar{y}), replacing \bar{x} and \bar{y} by and respectively in the given regression equation, we get.

$$
\begin{aligned}
& \\
& \quad \overline{\mathrm{y}}=13-\frac{3}{2} \overline{\mathrm{x}} \rightarrow 26-3 \overline{\mathrm{x}} \\
(2) \Rightarrow & 6 \overline{\mathrm{x}}+13-\frac{3}{2} \overline{\mathrm{x}}=31 \\
& \frac{12 \overline{\mathrm{x}}+26-3 \overline{\mathrm{x}}}{2}=31 \\
& 9 \overline{\mathrm{x}}+26=62 \\
& 9 \overline{\mathrm{x}}=62-26 \\
= & 36 \\
\overline{\mathrm{x}}= & 4 \\
\therefore \quad & (3) \Rightarrow \overline{\mathrm{y}}=13-\frac{3}{2}(4) \\
& =13-6=7 \\
\therefore \quad & \overline{\mathrm{x}}=4, \quad \overline{\mathrm{y}}=7
\end{aligned}
$$

Ans. (a)
174. Let us assume that $3 x+24=26 \rightarrow$ (1) represent the regression line of y on x and $6 x+y=31 \rightarrow(2)$ represent the regression line of x on y.
(1) $\Rightarrow \quad 2 y=26-3 x$

$$
y=13-\frac{3}{2}-x
$$

$\therefore \quad$ byx $=-\frac{3}{2}$
(2) $\Rightarrow 6 x=31-y$
$x=\frac{31}{6}-\frac{1}{6} y$
$\therefore \quad$ bxy $=-\frac{1}{6}$

$$
\begin{aligned}
\therefore & \mathrm{r}^{2}=\text { byx } \times b x y=\left(-\frac{3}{2}\right)\left(-\frac{1}{6}\right)=\frac{1}{4} \\
& r=\sqrt{\frac{1}{4}}= \pm \frac{1}{2}= \pm 0.5
\end{aligned}
$$

Ans. (b)
We take the sign of n as negative since both the regression coefficients are negative).
175. Ans. (a) Refer Properties
176. Let E_{1}, E_{2}, E_{3} denote the events that the probability is solved by X, Y and Z respectively.

Then we have
$P\left(E_{1}\right)=1 / 3 \Rightarrow P\left(\bar{E}_{1}\right)=1-P\left(E_{1}\right)=2 / 3 \quad-$
$P\left(E_{2}\right)=1 / 4 \Rightarrow P\left(\bar{E}_{2}\right)=1-P\left(E_{2}\right)=3 / 4$
$P\left(E_{3}\right)=1 / 5 \Rightarrow P\left(\bar{E}_{3}\right)=1-P\left(E_{3}\right)=4 / 5$
Problem will be solved if at least one of the three is able to solve it. Hence, the required probability that the problem will be solved is given by $\mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2} \cup \mathrm{E}_{3}\right)$

$$
\begin{array}{ll}
= & 1-\mathrm{P}\left(\overline{\mathrm{E}}_{1} \cap \overline{\mathrm{E}}_{2} \cap \overline{\mathrm{E}}_{3}\right) \\
= & 1-\left[\mathrm{P}\left(\overline{\mathrm{E}}_{1}\right) \cdot \mathrm{P}\left(\overline{\mathrm{E}}_{2}\right) \cdot \mathrm{P}\left(\overline{\mathrm{E}}_{3}\right)\right] \\
= & 1-2 / 3 \times 3 / 4 \times 4 / 5 \quad \\
= & 1-2 / 5=3 / 5
\end{array} \quad \text { [Since } \mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3} \text { are independent] }
$$

Ans. (c)
177. Given $\mathrm{P}(\mathrm{A})=\frac{1}{2}$
$P(B)=\frac{1}{3}$
$P(A \cap B)=\frac{1}{4}$
$\therefore \quad \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\frac{1}{4}}{\frac{1}{3}}=\frac{1}{4} \times \frac{3}{1}=\frac{3}{4}$
Ans. (a)

ANSWERS

178. Given $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{1}{3}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$

$$
\begin{aligned}
& \therefore \mathrm{P}(\overline{\mathrm{~A}} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~B})-\mathrm{P} \quad(\mathrm{~A} \cap \mathrm{~B}) \\
& =\quad \frac{1}{3}-\frac{1}{4}=\frac{4-3}{12}=\frac{1}{12}
\end{aligned}
$$

Ans. (c)
179. Given $\mathrm{P}(\mathrm{A}) \frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{1}{3}, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$

$$
\begin{aligned}
& \mathrm{P}(\overline{\mathrm{~A}} \cap \overline{\mathrm{~B}})=1-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) \\
& =1-\{\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})\} \\
& =1-\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& =\quad 1-\frac{1}{2}-\frac{1}{3}+\frac{1}{4} \\
& =\quad \frac{12-6-4+3}{12}=\frac{5}{12}
\end{aligned}
$$

Ans. (a)
180. $\mathrm{P}(\mathrm{A})=1 / 2, \mathrm{P}(\mathrm{B})=\frac{1}{3}, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$

$$
\begin{aligned}
& =\mathrm{P}(\overline{\mathrm{~A}} \cup \overline{\mathrm{~B}})=\mathrm{P}(\overline{\mathrm{~A} \cap \mathrm{~B}}) \\
& =1-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& =1-1 / 4 \\
& =\frac{4-1}{4}=\frac{3}{4}
\end{aligned}
$$

Ans. (b)
181. Given $x_{1}=1, x_{2}=2, x_{3}=3$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{x}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{x}_{2}\right)=\frac{1}{3}, \mathrm{P}\left(\mathrm{x}_{3}\right)=1 / 6 \\
& \therefore \quad \mathrm{E}(\mathrm{x})=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right) \\
& =\quad\left(1 \times \frac{1}{2}\right)+\left(2 \times \frac{1}{3}\right)+\left(3 \times \frac{1}{6}\right)=\frac{1}{2}+\frac{2}{3}+\frac{1}{2}
\end{aligned}
$$

$=\frac{3+4+3}{6}=\frac{10}{6}=\frac{5}{3}=1.666 \ldots$.
$=1.67$
Ans. (c)
182. Given $x_{1}=1, x_{2}=2, x_{3}=3$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{x}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{x}_{2}\right)=\frac{1}{3}, \mathrm{P}\left(\mathrm{x}_{3}\right)=\frac{1}{6} \\
& \therefore \quad \mathrm{~V}(\mathrm{x})=\mathrm{E}\left(\mathrm{x}^{2}\right) \ldots[\mathrm{E}(\mathrm{x})]^{2} \\
& \mathrm{E}(\mathrm{x})=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right) \\
& =\quad\left(1 \times \frac{1}{2}\right)+\left(2 \times \frac{1}{3}\right)+\left(3 \times \frac{1}{6}\right) \\
& \mathrm{E}(\mathrm{x})=\frac{1}{2}+\frac{2}{3}+\frac{1}{2} \\
& =\quad \frac{3+4+3}{6}=\frac{10}{6}=\frac{5}{3} \\
& \mathrm{E}\left(\mathrm{x}^{2}\right)=\mathrm{x}_{1}^{2} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2}^{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3}^{2} \mathrm{P}\left(\mathrm{x}_{3}\right) \\
& =\quad\left(1 \times \frac{1}{2}\right)+\left(4 \times \frac{1}{3}\right)+\left(9 \times \frac{1}{6}\right) \\
& =\quad \frac{1}{2}+\frac{4}{3}+\frac{3}{2} \\
& =\quad \frac{3+8+9}{6}=\frac{20}{6}=\frac{10}{3} \\
& \therefore \quad \mathrm{~V}(\mathrm{x})=\frac{10}{3}-\left(\frac{5}{3}\right)^{2} \\
& \mathrm{~V}(\mathrm{x})=\frac{30-25}{9}=\frac{5}{9}=.5556 \\
& =\frac{10}{9}-\frac{25}{9} \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

Ans. (a)
183. Let x denote the number of defective lamps.

X can assume the values $0,1,2,3$

ANSWERS

$\mathrm{p}(\mathrm{X}=0) \mathrm{p}$:probably having 0 bad orange out of 4 bad orange and 3 good orange out of 8 good orange.
$\mathrm{P}(\mathrm{x}=0)=\frac{4 \mathrm{C}_{0} \times 8 \mathrm{C}_{3}}{12 \mathrm{C}_{3}}=\frac{56}{55}$
$\mathrm{P}(\mathrm{x}=1)=\frac{4 \mathrm{C}_{1} \times 8 \mathrm{C}_{2}}{12 \mathrm{C}_{3}}=\frac{28}{55}$
$\mathrm{P}(\mathrm{x}=2)=\frac{4 \mathrm{C}_{2} \times 8 \mathrm{C}_{2}}{12 \mathrm{C}_{3}}=\frac{12}{55}$
$\mathrm{P}(\mathrm{x}=3)=$ Probability having 3 bad orange out of 4 bad orange and 0 good orange out of 8 good orange.
$=\frac{4 \mathrm{C}_{3} \times 8 \mathrm{C}_{0}}{12 \mathrm{C}_{3}}=\frac{1}{55}$
Probability that at least one orange out of three oranges is good $=1-P(x=3)$
$=\quad 1-1 / 55$
$=\frac{55-1}{55}=\frac{54}{55}$
Ans. (a)
184. Given $\mathrm{P}(\mathrm{A})=0.5, \mathrm{P}(\mathrm{AB})<0.3$

By Addition thereon,
$P(A$ or $B)=P(A)+P(B)-P(A B)$
$\therefore \quad \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{AB})<1 \quad[\therefore \mathrm{P}(\mathrm{A}$ or B$) \leq 1]$
$\therefore \quad \mathrm{P}(\mathrm{B}) \leq 1-\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{AB})$
$\leq 1-0.5+0.3$
$\mathrm{P}(\mathrm{B}) \leq 0.8$
Ans. (a)
185. Let the given events be A, B and $\mathrm{P}(\mathrm{A})=2 / 3 \mathrm{P}(\mathrm{B})$

Let $\mathrm{P}(\mathrm{B})=\mathrm{x}$

$$
\therefore \quad \mathrm{P}(\mathrm{~A})=2 / 3 \mathrm{x}
$$

The events A and B are exhaustive
$\therefore \quad \mathrm{P}(\mathrm{A}$ or B$)=1$
$\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=1$
$\Rightarrow \quad 2 / 3 x+x=1$
$5 / 3 x=1$
$\mathrm{x}=3 / 5$
$\therefore \quad \mathrm{P}(\mathrm{B})=3 / 5$

$$
\mathrm{P}(\mathrm{~A})=2 / 3 \times 3 / 5=2 / 5
$$

$\mathrm{P}(\mathrm{B})=3 / 5 \Rightarrow$ odds in favour of B are
$3: 5-3=3: 2$
Ans. (b)
186. Given person variates with parameter $=1$
i.e. $\lambda=1$

By the poison distribution
$p(x)=\frac{e^{-\lambda} \cdot \lambda^{x}}{x!}, x>0$
$\therefore \quad$ The required probability

$$
\begin{aligned}
\mathrm{P}(3<x<5) & =\mathrm{P}(\mathrm{x}=4) \\
& =\frac{\mathrm{e}^{-\lambda} \cdot \lambda^{4}}{4!} \\
& =\frac{\mathrm{e}^{-1}(1)^{4}}{4!} \\
& =\frac{0.36783 \times 1}{24} \\
\mathrm{P}(3<\mathrm{x}<5) & =0.015326
\end{aligned}
$$

Ans. (a)
187. Given $p=2 \%=2 / 100=.02$
$\mathrm{n}=200$
$\therefore \lambda=\mathrm{np}=200 \times .02=4$
The probability of at least 5 defective means.

$$
\begin{aligned}
& P(x \geq 5)=1-P(x<5) \\
&=1-\{P(x=0)+P(x=1)+P(x=2)+p(x=3)+P(x=4)\} \\
&=\quad 1-\left\{\frac{e^{-4}(4)^{0}}{0!}+\frac{e^{-4}(4)^{1}}{1!}+\frac{e^{-4}(4)^{2}}{2!}+\frac{e^{-4}(4)^{3}}{3!}+\frac{e^{-4}(4)^{4}}{4!}\right\}
\end{aligned}
$$

ANSWERS

$=1-e^{-4}\left\{1+4+\frac{4^{2}}{2!}+\frac{4^{3}}{3!}+\frac{4^{4}}{4!}\right\}$
$=1-\mathrm{e}^{-4}\left\{1+4+\frac{16}{2}+\frac{64}{6}+\frac{256}{24}\right\}$
$=\quad 1-(0.183)\{5+8+10.6667+10.667\}$
$=\quad 1-(0.83)(34.3334)$
$=10.6283$
$P(x \geq 5)=0.3717$
Ans. (b)
188. After a man is dealt 4 spade cards from an ordinary pack of 52 cards, there are $52-4=$ 48 cards left in the pack, out of which 9 are spade cards and 39 are no spade cards.
Now, 3 more cards can be dealt to the same man out of the 48 cards in ${ }^{48} \mathrm{C}_{3}$ ways, which determines the exhaustive number of ways.

If none of these 3 additional cards is a spade cards, then the 3 additional cards must be drawn out of the 39 non-spade cards, which can be done in $39 C_{3}$ ways.

The probability that none of the three additional cards dealt to the man is a spade card $=$ $\frac{39 C_{3}}{48 C_{3}}$

Hence, the required probability, ' P ' that at least one of the additional cards is a spade cards is given by:
$\mathrm{p}=1-\frac{39 \mathrm{C}_{3}}{48 \mathrm{C}_{3}}$
$=\quad 1-\frac{39 \times 38 \times 37}{3!} \times \frac{3!}{48 \times 47 \times 46}$
$=\quad 1-\frac{13 \times 19 \times 37}{16 \times 47 \times 23}$
$=1-\frac{9136}{17296}$
$=10.5282$
$\mathrm{p}=0.4718$
Ans. (c)
189. Ans. (a)
190. Given $P(x=1)=P(x=2)$

Given x is a poison variable.
$\therefore \frac{\mathrm{e}^{-\lambda}(\lambda)^{(1)}}{1!}=\frac{\mathrm{e}^{-\lambda}(\lambda)^{(2)}}{2!}$
$\lambda=\frac{\lambda^{2}}{2}$
$\lambda=2=$ variance
Ans. (b)
191. $\mathrm{P}=\frac{65}{500} \quad \mathrm{Q}=1-\mathrm{P}=1-\frac{65}{500}$
$Q=\frac{435}{500}$
$\mathrm{n}=500$
SE of Proportion of defectives $=\sqrt{\frac{\mathrm{P} Q}{\mathrm{n}}}$
$=\sqrt{\frac{65}{500} \times \frac{435}{500} \times \frac{1}{500}}$
$\mathrm{SE}=0.015$
Ans. (a) 0.015
192. Standard Error of Mean $(\mathrm{SE})=\frac{\sigma}{\sqrt{\mathrm{n}}}=\frac{0.75}{\sqrt{100}}$
$\mathrm{SE}=0.075$
95% Confidence Limit for population mean are given by : $\mathrm{x} \pm 1.96 \mathrm{SE}$
$=\quad 5.6 \pm 1.96 \times 0.75$
$=\quad 5.6 \pm 0.147$
The Confidence level are 5.453 and 5.747
Ans. (a) 5.453 and 5.747
193. Standard Error $(\mathrm{SE})=\frac{\sigma}{\sqrt{\mathrm{n}}}=\frac{4}{\sqrt{128}}=0.353$
96% confidence limit for population mean are
$\Rightarrow \quad \overline{\mathrm{x}}+2.05 \times \mathrm{SE}$
$=28 \pm 2.05 \times 0.353 \Rightarrow 28 \pm 0.72$
The confidence level are 27.272 and 28.728
Ans. (b) 27.272 and 28.728

ANSWERS

194. $\mathrm{P}=\frac{65}{500}, \mathrm{Q}=1-\mathrm{P}=1-\frac{65}{500} \Rightarrow \mathrm{Q}=\frac{435}{500}$

SE of proportion of defectives $=\sqrt{\frac{P Q}{n}}$
$=\sqrt{\frac{65}{500} \times \frac{435}{500} \times \frac{1}{500}}$
$\mathrm{SE}=0.015$
Confidence limits for the population are
$=\quad \mathrm{P} \pm 3 \times \mathrm{SE}$
$=\frac{65}{500} \pm 3 \times 0.015 \Rightarrow 0.13 \pm 0.045$
Levels are 0.085 and 0.175
or Levels are 8.5% and 17.5%
Ans. (a) 8.5% and 17.5
196. Variance $=4$
$\sigma=\sqrt{4}= \pm 2$
Statement is true
Ans. (a) True
197. $\mathrm{n}=10 \quad \mathrm{P}=0.3$
$\therefore \mathrm{Q}=(1-\mathrm{P})=1-0.3=0.7$
$\therefore \sigma=\sqrt{\mathrm{npq}}$
\therefore Variance $=\mathrm{npq}=10 \times 0.3 \times 0.7$
Variance $=2.1$
Ans. (a) 2.1
198. When the cost of living increases, the standard of living improves.

Ans. (b) false
199. The 95% confidence limit for the sample mean $(\overline{\mathrm{x}})$ is $\overline{\mathrm{x}} \pm 1.96\left(\frac{\sigma}{\sqrt{\mathrm{n}}}\right)$ which is not given

Ans. (b) False
200. Mean and variance never be equal
\therefore Statement is false
Ans. (b) False

Model Test Paper - BOS/CPT - 5

151. Let the fraction be x / y. Then according to the given condition of the problem,

$$
\frac{3 x}{y-3}=\frac{18}{11}
$$

$33 \mathrm{x}=18 \mathrm{y}-54$
$33 \mathrm{x}-18 \mathrm{y}+54=0$
$11 \mathrm{x}-6 \mathrm{y}+18=0$
and $\frac{x+8}{2 y}=\frac{2}{5}$
$\Rightarrow 5 \mathrm{x}+40=4 \mathrm{y}$
$5 \mathrm{x}-4 \mathrm{y}+40=0$
(i) $\times 2 \Rightarrow 22 x-12 y+36=0$
(ii) $\times 3 \Rightarrow 15 \mathrm{x}-12 \mathrm{y}+120=0$
(iii) - (iv),we get
$7 \mathrm{x}-84=0$
$7 \mathrm{x}=84$
$x=84 / 7=12$
(i) $\Rightarrow(11)(12)-6 y+18=0$
$132-6 y+18=0$
$6 y=150$
$y=150 / 6=25$
Hence, the required fraction is $12 / 25$
\therefore Ans. (c)
152. Let the two numbers are x and y

Given $\mathrm{x}+\mathrm{y}=150 \%$ of y

ANSWERS

$$
\begin{aligned}
& =\frac{150}{100} \times y \\
x+y & =1.5 y \\
x & =0.5 y \\
x & =\frac{1}{2} y
\end{aligned}
$$

Ans. (a)
153. Let three consecutive even numbers are $x, x+2, x+4$.

Given condition is $\mathrm{x}+(\mathrm{x}+2)+(\mathrm{x}+4)=60 \times \frac{3}{4}-15$
$3 x+6=30$
$3 x=24$
$x=\frac{24}{3}=8$
\therefore The middle number $=x+2=8+2=10$
Ans. (b)
154. Suppose my present age is x years and my sons present age is y years

Five years ago
my age $=(x-5)$ years
my son's age $=(y-5)$ years
According to the first condition of the problem,
$x-5=3(y-5)$
$x-5=3 y-15$
$\Rightarrow \mathrm{x} \quad 3 \mathrm{y}=15+5$
$\Rightarrow x-3 y=-10$
Ten years later
my age $=(x+10)$ years
my son's age $=(\mathrm{y}+10)$ years
According to the second condition of the problem,

$$
\begin{aligned}
& x+10=2(y+10) \\
& x+10=2 y+20 \\
& x-2 y=20-10
\end{aligned}
$$

$x-2 y=10$
(i) - (ii) $\Rightarrow \mathrm{y}=20$
(i) $\Rightarrow \mathrm{x}-60=-10$
$\mathrm{x}=60-10=50$
Hence, my presence age $=50$ years
and my son's present age $=20$ years
\therefore Ans. (a)
155. The compound ratio of $4: 3,9: 13,26: 5$ and $2: 15$ is

$$
\begin{aligned}
& =\frac{4 \times 9 \times 26 \times 2}{3 \times 13 \times 5 \times 15} \\
& =\frac{16}{25}
\end{aligned}
$$

Ans. (b)
156. We know $\mathrm{nPr}=\frac{\mathrm{n}!}{(n-4)!}$

$$
\begin{aligned}
& \therefore \quad 56_{\mathrm{P}_{\mathrm{r}+6}}=\frac{56!}{\{56-(\mathrm{r}+6)\}!} \\
& =\frac{56!}{(50-\mathrm{r})!} \\
& 54 \mathrm{P}_{\mathrm{r}+3}=\frac{54!}{\{54-(\mathrm{r}+3)\}!} \\
& =\frac{54!}{(51-\mathrm{r})!}
\end{aligned}
$$

$$
\text { Thus, } \frac{56 \mathrm{P}_{\mathrm{r}+3}}{54 \mathrm{P}_{\mathrm{r}+3}}=\frac{56!}{(50-\mathrm{r})!} \times \frac{(51-\mathrm{r})!}{54!}
$$

$$
=\frac{56 \times 55 \times 54!}{(50-r)!} \times \frac{(51-r)(50-r)!}{54!}
$$

$$
=\frac{56 \times 55 \times(51-\mathrm{r})}{1}
$$

But we are given the ratio as $30800: 1$

$$
\therefore \frac{56 \times 55 \times(51-\mathrm{r})}{1}=\frac{30800}{1}
$$

ANSWERS

(or) $(51-\mathrm{r})!=\frac{30800}{56 \times 55}=10 \quad \therefore \mathrm{r}=41$
Ans. (b)
157. He can arrange his schedule in
$8 \mathrm{P} 6=8 \times 7 \times 6 \times 5 \times 4 \times 3$
$=20160$ ways .
Ans. (b)
158. The two Indians can stand together in ${ }^{2} \mathrm{P}_{2}=2!=2$ ways.

So is the case with the two Americans and the two Russians.
Now these 3 groups of 2 each can stand in a row in ${ }^{3} P_{3}=3 \times 2=6$ ways. Hence by the generalized fundamental principle, the total num ber of ways in which they can stand for a photograph under given conditions is
$6 \times 2 \times 2 \times 2=48$
Ans. (c)
159. This is the number of combination of 52 cards taken five at a time.

Now applying the formula.
$52 \mathrm{C}_{5}=\frac{52!}{5!(52-5)!}$
$=\frac{52!}{5!47!}$
$=\frac{52 \times 51 \times 50 \times 49 \times 48 \times 47!}{5 \times 4 \times 3 \times 2 \times 1 \times 47!}$
$=2598960$
Ans. (a)
160. Let the unit's digit of the number be x and the ten's digit by y. Then
$x+y=9 \rightarrow(1)$
and the number $=10 y+x$
Reversing the order of digits of the given number,
Unit's digits becomes y
and ten's digits becomes x
\therefore Now number $=10 \mathrm{x}+\mathrm{y}$
According to the given condition of the problem,
$(10 x+y)-(x+10 y)=27$
$10 x+y-x-10 y=27$
$9 x-9 y=27$
$x-y=3 \rightarrow(2)$
Adding (1) and (2), 23 get
$2 \times=12$
$x=\frac{12}{2}=6$
(1) $\Rightarrow 6+y=9$
$y=9-6=3$
\therefore The given number is 36
Ans. (b)
161. $\operatorname{Lt}_{x \rightarrow 0} \frac{9^{x}-3^{x}}{4^{x}-2^{x}} \Rightarrow \operatorname{Lt}_{x \rightarrow 0}\left[\frac{\frac{\left(9^{x}-1\right)-\left(3^{x}-1\right)}{x}}{\frac{\left(4^{x}-1\right)-\left(2^{x}-1\right)}{x}}\right]$
$\operatorname{Lt}_{x \rightarrow 0}\left[\frac{\left(\frac{9^{x}-1}{x}\right)-\left(\frac{3^{x}-1}{x}\right)}{\left(\frac{4^{x}-1}{x}\right)-\left(\frac{2^{x}-1}{x}\right)}\right] \Rightarrow \frac{\log 9-\log 3}{\log 4-\log 2}$
$\Rightarrow \frac{2 \log 3-\log 3}{2 \log 2-\log 2}=\frac{\log 3}{\log 2}$
Ans. (a) $\frac{\log 3}{\log 2}$
162. $\operatorname{Lt}_{x \rightarrow 0} \frac{\left(5^{x}-1\right)^{2}}{\log (1+x)}=\frac{5^{2 x}-2.5^{x}+1}{\log (1+x)}$
$\Rightarrow \operatorname{Lt}_{x \rightarrow 0} \frac{\left(25^{x}-2.5^{x}+1\right)}{\log (1+x)} \Rightarrow \operatorname{Lt}_{x \rightarrow 0} \frac{\left(\frac{25^{x}-1}{x}\right)-2\left(\frac{5^{x}-1}{x}\right)}{\frac{\log (1+x)}{x}}$
Apply Limits

ANSWERS

$\Rightarrow \frac{\log 25-2 \cdot \log 5}{1}=\frac{\log 25-\log 25}{1}=0$
Ans. (d) None of these
163. $\underset{x \rightarrow 1}{\operatorname{Lt}} \mathrm{f}(\mathrm{x}) \Rightarrow \quad \underset{\mathrm{x} \rightarrow 1}{\operatorname{Lt}}(\mathrm{x}+1)$

App Lt
$\Rightarrow 1+1=2$
Ans. (a) 2
164. LHL $\underset{x \rightarrow 2}{\operatorname{Lt}}(\mathrm{x}-1)$

App Lt
$\Rightarrow 2-1=1 \quad \therefore$ LHL $=1$
RHL $\operatorname{Lt}_{x \rightarrow 2}(2 x-3)$
App. Lt
LHL 2.2-3 = 1
$\mathrm{f}(2)=2.2-3=1 \quad \therefore \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(2)$
$\therefore \mathrm{f}(\mathrm{x})$ Continuous at $\mathrm{x}=2$
Ans. (a) Continuous $x=2$
165. $f(x)=\frac{3 x^{2}+2 x+7}{x^{2}-3 x+2}=\frac{3 x^{2}+2 x+7}{(x-2)(x-1)}$

To be continuous $(\mathrm{x}-2) \neq 0 \quad \&(\mathrm{x}-1) \neq 0$
$\therefore x \neq 2 \& x \neq 1$
$\therefore \quad$ Points of discontinuity $=1,2$
Ans. (a) 1,2
166. Let $\mathrm{z}=\log \mathrm{x}$
$\mathrm{dz}=\frac{1}{\mathrm{x}} \mathrm{dx}$
$d x=x d z$
$\therefore \mathrm{I}=\int \frac{1}{\mathrm{x} \log \mathrm{x}} \mathrm{dx}=\int \frac{1}{\mathrm{x} \cdot \mathrm{Z}} \mathrm{xdz}$
$=\quad \int_{\mathrm{Z}}^{1} \mathrm{dz}$
$=\quad \log \mathrm{Z}$
$=\quad \log (\log \mathrm{x})+\mathrm{c}$
ans. (b)
167. Let $\mathrm{I}=\int \log _{10}{ }^{\mathrm{x}} \mathrm{dx}$
$=\quad \int \log _{\mathrm{e}}^{\mathrm{x}} \cdot \log _{10}^{\mathrm{e}} \mathrm{dx}$
$=\quad \log _{10}^{\mathrm{e}} \int \log \mathrm{x} .1 \mathrm{dx}$
$=\quad \log _{10}^{\mathrm{e}}\left[\log \mathrm{x} . \mathrm{x}-\int \frac{1}{\mathrm{x}} \mathrm{x} \mathrm{dx}\right]$
$I=\log _{10}^{e}[x \log x-x]+c$
Ans. (b)
168. Let $I=\int \frac{4 e^{x}+6 e^{-x}}{9 e^{x}-4 e^{-x}} d x$
$\therefore \quad I=\int \frac{4 e^{2 x}+6}{9 e^{2 x}-4} d x$
Let $\mathrm{t}=\mathrm{e}^{2 \mathrm{x}}$
$\therefore \mathrm{dt}=2 \mathrm{e}^{2 \mathrm{x}} \mathrm{dx}$
$=2 \mathrm{t} \mathrm{dx}$
$\therefore I=\int \frac{4 t+6}{9 t-4} \frac{d t}{2 t}=\int \frac{2 t+3}{t(9 t-4)} d t$
$=\int\left[\frac{0+3}{\mathrm{t}(0-4)}+\frac{2(4 / 9)+3}{4 / 9(9 \mathrm{t}-4)}\right] \mathrm{dt}$
$=\int\left[-\frac{3}{4 t}+\frac{35}{4(9 t-4)}\right] d t$
$=\quad-\frac{3}{4} \log \mathrm{t}+\frac{35}{4} \cdot \frac{\log (9 \mathrm{t}-4)}{9}+\mathrm{c}$
$=-\frac{3}{4} \log \mathrm{e}^{2 \mathrm{x}}+\frac{35}{36} \log \left(9 \mathrm{e}^{2 \mathrm{x}}-4\right)+\mathrm{c}$
Ans. (a)
169. See formula from the text book

Ans. (c)

ANSWERS

170. Put $\sqrt{x^{2}-6 x+100}=t$
$\therefore \quad \mathrm{x}^{2}-6^{\mathrm{x}}+100=\mathrm{t}^{2}$
$(2 x-6) d x=2 t d t$
$(x-3) d x=t d t$
$\int(x-3) \sqrt{x^{2}-6 x+100} d x=\int \sqrt{x^{2}-6 x+100}(x-3) d x$
$=\quad \int \mathrm{t} . \mathrm{tdt}$
$=\int t^{2} d t$
$=\int \frac{t^{3}}{3}+c$
$=\frac{1}{3}\left(\mathrm{x}^{2}-6^{\mathrm{x}}+100\right)^{3 / 2}+\mathrm{c}$
Ans. (a)
171. No. of ways in which one or more friends may invited
$=6_{\mathrm{C}_{1}}+6_{\mathrm{C}_{2}}+6_{\mathrm{C}_{3}}+6_{\mathrm{C}_{4}}+6_{\mathrm{C}_{5}}+6_{\mathrm{C}_{6}}$
$=2^{6}-1=63$ ways.
Ans. (a) 63 ways.
172. No. of ways of failure of candidate.
$=\quad 4_{C_{1}}+4_{C_{2}}+4_{C_{3}}+4_{C_{4}}$
$=2^{4}-1=15$ ways.
Ans. (c) 15
173. A voter can vote in the following ways
$254=\mathrm{n}_{\mathrm{C}_{1}}+\mathrm{n}_{\mathrm{C}_{2}}+\mathrm{n}_{\mathrm{C}_{3}}+\mathrm{n}_{\mathrm{C}_{4}}+\mathrm{n}_{\mathrm{C}_{5}}+\mathrm{n}_{\mathrm{C}_{6}}+\mathrm{n}_{\mathrm{C}_{7}} \ldots . \mathrm{n}_{\mathrm{C}_{\mathrm{n}-1}}$
$\therefore 254=2^{n}-\left(\mathrm{n}_{\mathrm{C}_{\mathrm{n}}}+1\right)=2^{\mathrm{n}}-(1+1)$
$\therefore 256=2{ }^{n}$
$\therefore 2^{8}=2^{n} \Rightarrow \therefore \mathrm{n}=8$ Total candidates $=8$
174. Ans. (c)

Allow 3 to sit one side and other 2 to the other side. Then the number of arrangements $=3 \mathrm{C} 1 \mathrm{X} 4!\times 4$!
174. No. of words of 3 consonants and 2 vowels among 17 consonants and 5 vowels are
$=17_{\mathrm{C}_{3}} \times 5_{\mathrm{C}_{2}} \times 5!$
$=816000$

Ans. (b) 81,6000
175. Ans. (c)
176. The present value of annual profit
$\mathrm{V}=\mathrm{A} . \mathrm{P}$. (ni)
$=34000 \times 3.7079$
$\mathrm{V}=128886$ which is less than initial cost of machine. Machine must not be purchased
Ans. (a) Machine should not be purchased.
177. $40=2000 \times \frac{\mathrm{r}}{100} \times 4$
$\therefore \quad \mathrm{r}=-0.5 \%$

Ans. (b) 0.5%

ANSWERS

$$
\begin{aligned}
& \text { 178. } \mathrm{I}_{1}=2000 \times \frac{4}{100} \times 1=80 \\
& \mathrm{I}_{2}=3000 \times \frac{14}{100} \times 1=420 \\
& \text { Total Interest }=500 \\
& \therefore \text { rate of interest }=\frac{500 \times 100}{5000 \times 1}=10 \% \\
& \mathrm{r}=10 \% \\
& \text { Ans. (a) } \mathrm{r}=10 \%
\end{aligned}
$$

179. $\mathrm{I}_{1}-\mathrm{I}_{2}=30 \Rightarrow 1200 \times \frac{\mathrm{R}}{100} \times 3-1000 \frac{\mathrm{R}}{100} \times 3=30$
$\Rightarrow 36 \mathrm{R}-30 \mathrm{R}=30$
$6 \mathrm{R}=30$
$\therefore \mathrm{R}=5 \%$
Ans. (c) 5\%
180. $40=2000 \times \frac{2}{100} \times n$
$\mathrm{n}=1 \mathrm{yr}$.
Ans. $(\mathrm{a})=1 \mathrm{yr}$.
181. $\frac{\mathrm{a}+\mathrm{b}}{2}=20 \Rightarrow \mathrm{a}+\mathrm{b}=40 \rightarrow(1)$
$\mathrm{SD}=5 \rightarrow \frac{\mathrm{a}-\mathrm{b}}{2}=5$
$\therefore \quad \mathrm{a} \ldots \mathrm{b}=10 \rightarrow(2)$
$\Rightarrow 2 \mathrm{a}=50 \Rightarrow \mathrm{a}=25$
$\therefore \mathrm{b}=15$
Ans. (a) 25, 15
182. Mean $=\frac{\sum \mathrm{x}}{\mathrm{n}}$
$4.4=\frac{1+2+6+a+b}{5}$
$\therefore \quad \mathrm{a}+\mathrm{b}=13 \rightarrow(1)$
$\sigma^{2}=\frac{\sum \mathrm{x}^{2}}{\mathrm{~N}}-\overline{\mathrm{x}}^{2}$
$8.24=\frac{\sum \mathrm{x}^{2}}{5}-(4.4)^{2}$
$\sum \mathrm{x}^{2}=138$
$1+4+9+a^{2}+b^{2}=138$
$\therefore \quad a^{2}+b^{2}=138 \Rightarrow a^{2}+(13-a)^{2}=138$
$\Rightarrow a^{2}-13 a-36=0 \quad a=9,4$
$\therefore \quad$ Numbers $\rightarrow 9,4$
Ans. (b)
183. For individual series, the rank of the median is $=\left(\frac{\mathrm{N}+1}{2}\right)^{\text {th }}$ term

Ans. (b) $\left(\frac{\mathrm{N}+1}{2}\right)^{\text {th }}$ term
184. Rank of the median of the series $2,3,4,5,6,7$
$=\left(\frac{\mathrm{N}+1}{2}\right)^{\text {th }}$ term $=\left(\frac{6+1}{2}\right)^{\text {th }}$ term
$=3.5$ th term
Ans. (a) 3.5
185. Regression Eq. $2 x+3 y-10=0$

If $\mathrm{y}=50$
$\therefore 2 \mathrm{x}=+10-3 \times 50=-140$
$x=-70$
None of these
Ans. (d) None of these.

ANSWERS

186. Ans. (c) Refer Properties
187. Ans. (c) Refer Properties
188. Given $\mathrm{r}(\mathrm{x}, \mathrm{y})=0.4 \rightarrow(1)$

We know that $r(a X, c Y)=\frac{a \times c}{|a| \times|c|} \cdot r(x, y) \rightarrow(2)$
Using (2) in (1), we get
$r(2 x,-y)=r(2 x,-1 y)$
$=\frac{2 \times(-1)}{|2| \times|-1|} \cdot \mathrm{r}(\mathrm{x}, \mathrm{y})$
$=\frac{-2 \times 0.4}{2 \times 1}$
$r(2 x,-y)=-0.4$
Ans. (b)
189. Computation of Correlation Coefficient

	X	y	xy	x^{2}	y^{2}
	69	70	4830	4761	4900
	85	87	7395	7225	7569
Total	154	157	12225	11986	12469

$\bar{x}=\frac{154}{2}=77, \bar{y}=\frac{157}{2}=78.5$
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=\frac{\sum \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{n}}-\overline{\mathrm{x}} \overline{\mathrm{y}}=\frac{12225}{2}-(77)(78.5)$
$=68$
$S x=\sqrt{\frac{\sum x_{i}{ }^{2}}{n}-\bar{x}^{2}}=\sqrt{\frac{11986}{2}-(77)^{2}}$
$=8$
$S y=\sqrt{\frac{\sum y_{i}{ }^{2}}{n}-\bar{y}^{2}}=\sqrt{\frac{12469}{2}-(78.5)^{2}}=8.5$
$\therefore \quad n=\frac{\operatorname{Cov}(x, y)}{\operatorname{Sx~Sy}}=\frac{68}{8 \times 8.5}=\frac{68}{68}=1$
Ans. (a)
190. Computation of correlation $\mathrm{Co}-$ efficient.

\mathbf{x}	\mathbf{y}	$\mathbf{x y}$	$\mathbf{x}^{\mathbf{2}}$	$\mathbf{y}^{\mathbf{2}}$
102	50	5100	10404	2500
109	48	5232	11881	2304
211	98	10332	22285	4804

$\bar{x}=\frac{211}{2}=105.5, \bar{y}=\frac{98}{2}=49$
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=\frac{\sum \mathrm{xi} \mathrm{yi}}{\mathrm{n}}-\overline{\mathrm{x}} \overline{\mathrm{y}}=\frac{10332}{2}-(105.5)(49)$
$=5166-5169.5=-3.5$
$S x=\sqrt{\frac{\sum \mathrm{xi}^{2}}{\mathrm{n}}-\overline{\mathrm{x}}^{2}}=\sqrt{\frac{22285}{2}-(105.5)^{2}}=3.5$
$S y=S x=\sqrt{\frac{\sum \mathrm{yi}^{2}}{\mathrm{n}}-\bar{y}^{2}}=\sqrt{\frac{4804}{2}-(49)^{2}}=1$
$\therefore \quad \mathrm{n}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\mathrm{Sx} \operatorname{Sy}}=\frac{-3.5}{(3.5) \times(1)}=-1$
Ans. (b)
191. Ans. (a) ... Refer Properties
192. Ans. (a) ... Refer Properties
193. Ans. (b) ... Refer Properties
194. Given $X \sim N(\mu, \sigma 2)$, where $\mu=2$ and $\sigma^{2}=9$
$\sigma=3$
We want x so that
$\mathrm{P}(2 \leq \mathrm{x} \leq \mathrm{x})=0.4115 \rightarrow(1)$
When $X=2, Z=\frac{x-\mu}{\sigma}=\frac{2-2}{3}=0$
When $\mathrm{x}=\mathrm{x}, \mathrm{Z}=\frac{\mathrm{x}-2}{3}=\mathrm{Z1}($ Say $) \rightarrow(2)$
From (1), we get $P\left(0 \leq Z \leq Z_{1}\right)=0.4115$
$\Rightarrow \quad Z_{1}=1.35$ (from Normal Table)

ANSWERS

Substituting in (2), we get
$\frac{x-2}{3}=1.35$
$\therefore \mathrm{x}=2+3(1.35)$
$\mathrm{x}=6.05$
Ans. (b)
195. Mean $=$ First moment about origin $=35$ (given) $\rightarrow(1)$

Second moment about $35=10$ (given)
\Rightarrow Second moment about mean $=10$

$$
\mu 2=0 \rightarrow(2)
$$

Since the given distribution is normal,
$\beta 1=0$ and $\beta 2=3$
$\therefore \beta 1=\frac{\mu 3^{2}}{\mu 2^{3}}=0 \Rightarrow \mu 3=0$
$\beta 2=\frac{\mu 4}{\mu 2^{2}}=3 \Rightarrow \mu 4=3 \mu_{2}^{2}=3 \times 10^{2}=300$
$\therefore \mu 1=0$ (always), $\mu 2=10, \mu 3=0, \mu 4=300$
Ans. (c)
196. The most commonly used confidence limit is $\quad \rightarrow 95 \%$

Ans. (c) 95%
197. Sample mean is statistic

Ans. (b) Statistic
198. Deliberate sampling is - Non \backslash random sampling

Ans. (b) Non random sampling
199. Stratified random sampling issued for Non - Homogeneous population.
Ans.
(b) Non-homogeneous
200. Random Sampling is also called lottery sampling

Ans. (b) True

Model Test Paper - BOS/CPT - 6

151. Let given number is x

Then the condition $\frac{1}{5}\left(\frac{1}{3}\left(\frac{1}{2} \mathrm{x}\right)\right)=15$

$$
\begin{aligned}
& \frac{x}{30}=15 \\
& x=450
\end{aligned}
$$

Ans. (b)
152. Let the number be $=x$.

Then given the condition $=\frac{3}{4}\left(\frac{1}{5} \mathrm{x}\right)=60$

$$
\begin{aligned}
& \frac{3 x}{20}=60 \\
& x=\frac{60 \times 20}{3}=400
\end{aligned}
$$

Ans. (b)
153. Let the number be x.

Given $\frac{4}{5}\left[\frac{3}{8}(\mathrm{x})\right]=24$
$\frac{3}{10} x=24$
$x=24 \times \frac{10}{3}=80$
$\therefore 250 \%$ of $\mathrm{x}=250 \%$ of $80=\frac{250}{100} \times 80=200$
Ans. (d)
154. Let the number be x

Given condition

$$
\begin{aligned}
& x+x^{2}=182 \\
& x^{2}+x-182=0 \\
& (x+14)(x-13)=0 \\
& x=-14, x=13
\end{aligned}
$$

$\therefore \mathrm{x}=13$ (negative reflected)
Ans. (a)

ANSWERS

155. Let the unit's digit of the number be x and ten's digit by y

Then $\quad \mathrm{x}+\mathrm{y}=12 \rightarrow(1)$
and the number $=10 y+x$
Reversing the order of digits of the given number,
Unit's digit becomes y
and ten's digits becomes x
\therefore New number $=10 \mathrm{x}+\mathrm{y}$
According to the given condition of the problem $(10 x+y)-(x+10 y)=18$
$9 x-9 y=-18$
$x-y=-2 \rightarrow(2)$
Adding (1) and (2) $\Rightarrow 2 \mathrm{x}=10$

$$
x=5
$$

$\therefore \quad \Rightarrow \mathrm{y}=7$
$\therefore \quad$ The number is 75
Ans. (a)
156. Let the number of coins is x

Given $10 x+\frac{14}{2} x+\frac{18}{4} x=430$
$\frac{40 x+28 x+18 x}{4}=430$
$\frac{86 x}{4}=430$
$x=\frac{430 \times 4}{86}=20$
$\therefore \quad$ The one Rupee coins $=10 \mathrm{x}=10 \times 20=200$
The 50 paise coins $=14 \mathrm{x}=14 \times 20=280$
The 25 paise coins $=18 \mathrm{x}=18 \times 20=360$
Ans. (a)
157. First Vessels Contain Milk Ratio 5

First Vessels Contain Water Ratio 2

Second Vessels Contain Milk Ratio 6
Second Vessels Contain Water Ratio 1
Both the Vessels Milk $=5+6=11$
Both the Vessels Water $=2+1=3$
$\therefore \quad$ The new Ratio $=11: 3$
Ans. (b)
158. Given $\mathrm{f}(\mathrm{x})=\mathrm{x}+2 ; \quad \mathrm{g}(\mathrm{x})=7^{\mathrm{x}}$ gof $(x)=g[f(x)]$

$$
=\operatorname{g}\left[7^{x}\right]
$$

$$
=7^{x+2}
$$

Ans. (a)
159. Let their monthly incomes be Rs. 9 x and Rs. 7x respectively.

Let their monthly expenditures be Rs. $4 y$ and Rs. 3y respectively.
According ot the given condition of the problem,
$9 x-4 y=200 \rightarrow(1)$
$7 x-3 y=200 \rightarrow(2)$
Multiply (1) by 3 , we get
$27 x-12 y=600$
Multiply (2) by 4, we get
$28 \mathrm{x}-12 \mathrm{y}=800$
Subtracting (3) from (4), we get
$\mathrm{x}=200$
Hence their monthly income are Rs. $(9 \times 200=1800)$ and Rs. $(7 \times 200=1400)$.
Ans. (a)

ANSWERS

160. Let x be the distributed amount of A, B and C

Given

$$
\begin{aligned}
\therefore \quad & 5 x+11 x+3 x=950 \\
& 19 x=950 \\
& x=\frac{950}{19}=50
\end{aligned}
$$

$\therefore \quad$ The amount of $A=5 \mathrm{x}=5 \times 50=250$
The amount of $B=11 x=11 \times 50=550$
$\therefore \quad$ The difference of A and $\mathrm{B}=300$
Ans. (a)
161. $\operatorname{Lt}_{x \rightarrow 1} \frac{e^{-x}-e^{-1}}{x-1} \Rightarrow \operatorname{Lt}_{x \rightarrow 1} \frac{e^{1-x}-1}{e(x-1)}$
let $1+\mathrm{h} \rightarrow \mathrm{x}$ where $\mathrm{h} \rightarrow 0$
$\therefore \quad \operatorname{Lt}_{x \rightarrow 0} \frac{e^{h}-1}{e(-h)}=\frac{-1}{e}$
Ans. (b) $-1 / \mathrm{e}$
162. $\operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{(1+\mathrm{x})^{\mathrm{n}}-1}{\mathrm{x}}$
$=\operatorname{Lt}_{x \rightarrow 0} \frac{\left(1+n x+\frac{n(n-1) x^{2}}{2!}+\ldots \ldots\right)-1}{x}$
$=\operatorname{Lt}_{x \rightarrow 0} \frac{x\left[n+\frac{n(n-1)^{x}}{2!}+\frac{n(n-1)(n-2) x^{2}}{3!} \ldots \ldots .\right]}{x}$
App Lt
$\mathrm{n}+0=\mathrm{n}$
Ans. (c) n
163. $\operatorname{Lt}_{x \rightarrow 0} \frac{(x+2)^{5 / 3}-(a+2)^{5 / 3}}{x-a}$
$\operatorname{Lt}_{x \rightarrow 0} \frac{(x+2)^{5 / 3}-(a+2)^{5 / 3}}{[(x+2)-(a+2)]}$
Apply Limits
$\Rightarrow \frac{5}{3} \cdot(\mathrm{a}+2)^{5 / 3-1}=\frac{5}{3}(\mathrm{a}+2)^{2 / 3}$
Ans. (a) $\frac{5}{3}(a+2)^{2 / 3}$
165. $\operatorname{Lt}_{x \rightarrow 0} \frac{2^{x}-3^{x}}{x} \Rightarrow \operatorname{Lt}_{x \rightarrow 0} \frac{\left(2^{x}-1\right)-\left(3^{x}-1\right)}{x}$
$\operatorname{Lt}_{x \rightarrow 0} \frac{2^{x}-1}{x}-\operatorname{Lt}_{x \rightarrow 0} \frac{3^{x}-1}{x} \quad\left[\operatorname{Lt}_{x \rightarrow 0} \frac{a^{x}-1}{x}=\log e^{a}\right]$
$\Rightarrow \log 2-\log 3$
$\Rightarrow \log \left(\frac{2}{3}\right)$
Ans. (b)
166. $f^{\prime}(x)=3 x^{2}+2$
$\int f^{\prime}(x) d x=\int\left(3 x^{2}+2\right) d x$
$\mathrm{f}(\mathrm{x})+\mathrm{c}=\frac{3 \mathrm{x}^{3}}{3}+2 \mathrm{x}+\mathrm{c}$
When $\mathrm{f}(0)=0 \Rightarrow \mathrm{c}=0$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}$
$\therefore \mathrm{f}(2)=2^{3}+2(2)$
$=8+4=12$
Ans. (c)
167. Let $I=\int \frac{x+3}{x^{2}+6 x+4}$

Put $x^{2}+6 x+4=t$
$\therefore(2 \mathrm{x}+6) \mathrm{dx}=\mathrm{dt}$
$(x+3) d x=\frac{d t}{2}$
$\therefore \int \frac{\mathrm{x}+3}{\mathrm{x}^{2}+6 \mathrm{x}+4} \mathrm{dx}=\int \frac{\mathrm{dt}}{2 \mathrm{t}}$
$=\frac{1}{2} \int \frac{1}{\mathrm{t}} \mathrm{dt}$

ANSWERS

$\frac{1}{2} \log (\mathrm{t})$
$\therefore \int \frac{\mathrm{x}+3}{\mathrm{x}^{2}+6 \mathrm{x}+4} \mathrm{dx}=\frac{1}{2} \log \left(\mathrm{x}^{2}+6 \mathrm{x}+4\right)+\mathrm{c}$

Ans. (a)
168. $\int e^{x} \frac{x-1}{(x+1)^{3}} d x=\int \frac{x+1-2}{(x+1)^{3}} e^{x} d x$
$=\int e^{x}\left[\frac{1}{(x+1)^{2}}-\frac{2}{(x+1)^{3}}\right] d x$
$=\int \mathrm{e}^{\mathrm{x}}\left\{\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right\} \mathrm{dx}$
$=e^{x} f(x) \quad$ where $f(x)=\frac{1}{(x+1)^{2}}$
$\int e^{x} \frac{(x-1)}{(x+1)^{3}} d x=\frac{e^{x}}{(x+1)^{2}}+c$
Ans.(a)
169. $\int(3 x+5)^{4} d x=\frac{(3 x+5)^{4+1}}{(4+1)(3)}+c$
$=\frac{(3 \mathrm{x}+5)^{5}}{15}+\mathrm{c}$
Ans. (b)
170. $\int \sqrt{7 x+5} d x$

$$
\begin{aligned}
& =\int(7 x+5)^{\frac{1}{2}} d x \\
& =\frac{(7 x+5)^{\frac{1}{2}+1}}{\left(\frac{1}{2}+1\right)(7)}+c \\
& =\frac{(7 x+5)^{\frac{3}{2}}}{\left(\frac{3}{2}\right)(7)}+c
\end{aligned}
$$

$\frac{2(7 x+5)^{\frac{3}{2}}}{21}+c$
Ans. (a)
171. Voter has option
(i) Two candidates from gentlemen $=3_{\mathrm{c}_{2}}=3$
(ii) Two candidates from ladies $=3_{\mathrm{c}_{2}}=3$
(iii) One from each ladies \& gentlemen $=3_{\mathrm{c}_{1}} \times 3_{\mathrm{C}_{1}}=9$

Total options $=3+3+9=15$
Ans. (c) 15
172. Total hand shakes in the party $=40_{c_{2}}=780$

Ans. (a) 780
173. Total triangle formed by m sides $=\mathrm{m}_{\mathrm{C}_{3}}$
$\Rightarrow \quad \frac{m(m-1)(m-2)(m-3)!}{(m-3)!3!}$
$\Rightarrow \frac{\mathrm{m}(\mathrm{m}-1)(\mathrm{m}-2)}{6}$
Ans. (a) $\frac{m(m-1)(m-2)}{6}$
174. Cricket team of 11 among 14 players out of which one wicketkeeper
$=12_{\mathrm{C}_{10}} \times 2_{\mathrm{C}_{1}}=66 \times 2$
$\Rightarrow \quad 132$
Ans. (b) 132
175. No. of ways in which a particular child goes to circus $=7_{C_{2}} \times 1=21$

Ans. (c) 21
176. $a^{x}=b^{y}=c^{z}=k$ (let)
$\therefore \log _{a^{k}}=x, \quad \log _{b}{ }^{k}=y, \quad \log _{c^{k}}=z$
$\therefore \log _{k} a=1 / x, \quad \log _{k} b=1 / y, \quad \log _{k} c=1 / z$
x, y, z in GP
$\therefore y^{2}=x z$
$\left(\log _{b}{ }^{\mathrm{k}}\right)^{2}=\left(\log _{\mathrm{a}} \mathrm{k}\right) \cdot\left(\log _{\mathrm{c}} \mathrm{k}\right)$

ANSWERS

$\therefore \quad \frac{\log _{\mathrm{b}} \mathrm{k}}{\log _{\mathrm{a}} \mathrm{k}}=\frac{\log _{\mathrm{c}} \mathrm{k}}{\log _{\mathrm{b}} \mathrm{k}} \Rightarrow \frac{\log _{\mathrm{k}} \mathrm{a}}{\log _{\mathrm{k}} \mathrm{k}}=\frac{\log _{\mathrm{k}} \mathrm{b}}{\log _{\mathrm{k}} \mathrm{c}}$
$\therefore \log _{\mathrm{a}}, \log _{\mathrm{b}}$ and $\log _{\mathrm{c}}$ in GP
Ans. (b) G.P.
177. $\frac{1}{1024}=8 .\left(\frac{1}{2}\right)^{\mathrm{n}-1} \Rightarrow\left(\frac{1}{2}\right)^{13}=\left(\frac{1}{2}\right)^{\mathrm{n}-1}$
$\therefore \mathrm{n}=14$
6th team from end $=(14-6+1)$ from beginning $=9$ th term
$\mathrm{T}_{9}=8 .\left(\frac{1}{2}\right)^{9-1}=8 .\left(\frac{1}{2}\right)^{8}=\frac{1}{32}$
Ans. (c) $1 / 32$
178. Product of 2nd term from start \& last 2 nd term from end $=(a r) \times a(r)^{n \ldots 2}=a^{2} r^{(n . \ldots 1)}$

Product of first \& last term $=a \times a r^{n-1}=a^{2} r^{n-1}$
Hence proved the statement. It is true statement
Ans. (a) True
179. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in GP $\quad \therefore \mathrm{b}^{2}=\mathrm{ac}$
$\mathrm{a}, \mathrm{x}, \mathrm{b}$ in $\mathrm{AP} \Rightarrow \mathrm{x}=\frac{\mathrm{a}+\mathrm{b}}{2}$
b, y, c in AP $\Rightarrow y=\frac{b+c}{2}$
$\therefore \frac{a}{x}+\frac{c}{y}=\frac{2 a}{a+b}+\frac{2 c}{b+c} \Rightarrow \frac{2[a b+a c+a c+b c]}{a b+b^{2}+a c+b c}$
$\Rightarrow \frac{2[\mathrm{ab}+\mathrm{ac}+\mathrm{ac}+\mathrm{bc}]}{\mathrm{ab}+\mathrm{ac}+\mathrm{ac}+\mathrm{bc}} \quad\left\{\mathrm{b}^{2}=\mathrm{ac}\right\}$
$=2$
Ans. (c) 2
180. $\frac{1}{x}+\frac{1}{y}=\frac{x+y}{x y} \Rightarrow \frac{\frac{a+b}{2}+\frac{b+c}{2}}{\frac{(a+b)(b+c)}{4}}$
$\Rightarrow \frac{2(a+2 b+c)}{\left(a b+b^{2}+a c+b c\right)}=\frac{2(a+2 b+c)}{a b+b^{2}+b^{2}+b c}$
$=\frac{2(a+2 b+c)}{b(a+2 b+c)}=\frac{2}{b}$
Ans. (b) $\frac{2}{\mathrm{~b}}$
181. The number of times a particular item occurs in a given data is called its frequency.

Ans. (b) Frequency
182. Lower class $(\mathrm{s})=10.6$

Width $=2.5$ (Class interval)
Upper Class (L) of Lightest Class
$=\mathrm{S}=10 \times$ C.I.
$=10.6+10 \times 2.5$
$=35.6$
Ans. (a) 35.6
183. $\frac{\text { Lower Class }+ \text { Upper Class }}{2}=$ Mid Value
$\frac{\mathrm{L}+\mathrm{U} \cdot \text { Class }}{2}=\mathrm{m}$
\therefore Upper class $=(2 \mathrm{~m}-\mathrm{L})$
Ans. (c) $(2 m-L)$
184. Mean $=\frac{1 . x+2.2 x+3.3 x+\ldots . n \cdot n x}{n(n+1) \cdot x / 2}$
$=\frac{\left(1^{2}+2^{2}+3^{2}+\ldots \ldots . n^{2}\right) x}{n(n+1) \cdot x / 2}$
$=\frac{\left(1^{2}+2^{3}+3^{2}+\ldots \ldots . n^{2}\right) x}{n(n+1) \cdot x / 2}$
$=\frac{n(n+1)(2 n+1) x \times 2}{6 n(n+1)-x}=\frac{(2 n+1)}{3}$
Mean $=\frac{(2 n+1)}{3}$
Ans. (c) $\frac{2 n+1}{3}$

ANSWERS

185. $\overline{\mathrm{x}}=10, \mathrm{n}=4$
$\Sigma \mathrm{x}=\mathrm{n} . \quad \overline{\mathrm{x}}=4 \times 10=40$
Corrected $\Sigma \mathrm{x}=(40+4 \mathrm{a})$
Corrected $\quad \bar{x}=\frac{40+4 a}{4}$
$13=\frac{40+4 a}{4}$
$4 \mathrm{a}=12$
$\mathrm{a}=3$
Ans. (c) 3
186. From the given data, we observe that
$20+5=25$
$21+4=25$
and $22+3=25$
Thus, x and y are connected by the linear relation: $x+y=25 \rightarrow(1)$
\Rightarrow There is perfect correlation between x and y
$\Rightarrow \mathrm{r}= \pm 1 \rightarrow(2)$
From (1) / We get $y=25-x$
$\therefore \quad$ As x increases, y decreases (by the same amount)
$\Rightarrow \quad \mathrm{x}$ and y are negatively correlated $\quad \rightarrow(3)$
From (2) and (3), we conclude that
$r=r(x, y)=-1$
Ans. (c)
187. Ans. (b) Refer Properties
188. Ans. (b) Refer Properties
189. Ans. (b) Refer Properties
190. Ans. (b) Refer Properties
191. Lt $X \ldots B(n=6, p)$. When X denotes the number of successes. Then, by binomial probability law, the probability of r successes is givenby

$$
\begin{aligned}
& \mathrm{p}(\mathrm{r})=\mathrm{P}(\mathrm{x}=\mathrm{r})=6 \mathrm{C}_{\mathrm{r}} \mathrm{P}^{\mathrm{r}} \mathrm{q}^{6-\mathrm{r}} \rightarrow(1) \\
& \mathrm{r}=0,1,2, \ldots \ldots \ldots \ldots 6
\end{aligned}
$$

Put $\mathrm{r}=3$ and 4 in (1)
(1) $\Rightarrow \mathrm{p}(3)=6 \mathrm{C}_{3} \mathrm{p}^{3} \mathrm{q}^{3}=20 \mathrm{p}^{3} \mathrm{q}^{3}=0.2457$ (given)
$\mathrm{p}(4)=6 \mathrm{C}_{4} \mathrm{p}^{4} \mathrm{q}^{2}=15 \mathrm{p}^{4} \mathrm{q}^{2}=0.0819$ (given)
$\frac{\mathrm{p}(4)}{\mathrm{p}(3)}=\frac{15 \mathrm{p}^{4} \mathrm{q}^{2}}{20 \mathrm{p}^{3} \mathrm{q}^{3}}=\frac{0.0819}{0.2457}=\frac{1}{3}$
$\Rightarrow \quad \frac{3}{4} \cdot \frac{\mathrm{p}}{\mathrm{q}}=\frac{1}{3}$
$\therefore \quad 9 p=4 q=4(1-p)$
$\therefore \quad 13 p=4$ $p=4 / 13$
$\therefore \quad \mathrm{q}=1-\mathrm{p}=1-4 / 13=9 / 13$
Ans. (b)
192. Ans. (a) - Refer Properties
193. Ans. (b) - Refer Properties
194. Ans. (a) - Refer Properties
195. Ans. (b) - Refer Properties
196. Which measure of dispersion has some desirable mathematical properties \rightarrow Standard Deviation.

Ans. (a) Standard Deviation.
197. $\mathrm{x} \sqrt{1+\mathrm{y}}+\mathrm{y} \sqrt{1+\mathrm{x}}=0$
$\Rightarrow x \sqrt{1+y}=-y \sqrt{1+x}$
Eg. Both side

$$
\begin{aligned}
& x^{2}(1+y)=y^{2}(1+x) \\
& \left(x^{2}-y^{2}\right)=y^{2} x-x^{2} y \\
& (x+y)(x-y)=-x y(x-y) \\
& \therefore \quad x+y+x y=0 \Rightarrow y=\frac{-x}{1+x} \\
& \therefore \quad \frac{d y}{d x}=\frac{(1+x)(-1)-(-x)(1)}{(1+x)^{2}}=\frac{-1-x+x}{(1+x)^{2}} \\
& \therefore \quad \frac{d y}{d x}=\frac{-1}{(1+x)^{2}} \Rightarrow\left(1+x^{2}\right) \frac{d y}{d x}=-1
\end{aligned}
$$

Ans. (c) (-1)

ANSWERS

198. $y=x \sqrt{x^{2}+1}+\log \left(x+\sqrt{x^{2}+1}\right)$

$$
\begin{aligned}
& \frac{d y}{d x}=x \cdot \frac{1}{2 \sqrt{x^{2}+1}} \cdot 2 x+\sqrt{x^{2}+1} \cdot 1+\frac{1}{x+\sqrt{x^{2}+1}}\left(1+\frac{1}{2 \sqrt{x^{2}+1}} \cdot 2 x\right) \\
& =\quad \frac{x^{2}}{\sqrt{x^{2}+1}}+\sqrt{x^{2}+1}+\frac{\sqrt{x^{2}+1}+x}{\left(x+\sqrt{x^{2}+1}\right)} \frac{1}{\sqrt{x^{2}+1}} \\
& =\quad \frac{x^{2}+x^{2}+1+1}{\sqrt{x^{2}+1}}=\frac{2\left(x^{2}+1\right)}{\sqrt{x^{2}+1}}=2 \sqrt{1+x^{2}}
\end{aligned}
$$

Ans. (c) $2 \sqrt{1+\mathrm{x}^{2}}$
199. $y=a e^{m x}+b e^{-m x}$

$$
\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{ame} \mathrm{e}^{\mathrm{mx}}-\mathrm{bme} \mathrm{e}^{-\mathrm{mx}}
$$

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}=\left(\mathrm{ame}^{\mathrm{mx}}-\mathrm{bme}^{-\mathrm{mx}}\right)
$$

$$
=\quad a m^{2} e^{m x}+b m^{2} e^{-m x}
$$

$$
=m^{2}\left(\mathrm{ae}^{\mathrm{mx}}+\mathrm{be}^{-\mathrm{mx}}\right)
$$

$$
\frac{d^{2} y}{d x^{2}}=m^{2} y
$$

Ans. (c) $m^{2} y$
200. $12_{\mathrm{C}_{5}}+2.12_{\mathrm{C}_{4}}+12_{\mathrm{C}_{3}}=14_{\mathrm{C}_{\mathrm{x}}}$
$\left(12_{\mathrm{C}_{5}}+12_{\mathrm{C}_{4}}\right)+\left(12_{\mathrm{C}_{4}}+12_{\mathrm{C}_{3}}\right)=14_{\mathrm{C}_{\mathrm{x}}}$
$13_{C_{5}}+13_{C_{4}}=14_{C_{x}}$
$\left[{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}\right]$
$14_{C_{5}}=14_{C_{x}}$
$\mathrm{X}=5$ but value $14_{\mathrm{C}_{9}}=14_{\mathrm{C}_{5}}$
$\therefore 14_{C_{x}}=14_{C_{9}}$
$\therefore \mathrm{x}=9$
$\mathrm{x}=5$ or 9
Ans. (c) 5 or 9 .

Model Test Paper - BOS/CPT - 7

151. Let the number be x . Then according to the given condition of the problem,
$\frac{x}{3}=\frac{x+1}{4}+1$
$\Rightarrow \frac{\mathrm{x}}{3}-\frac{\mathrm{x}+1}{4}=1$
$\Rightarrow \frac{4 \mathrm{x}-3(\mathrm{x}+1)}{12}=1$
$\Rightarrow \frac{x-3}{12}=1$
$\Rightarrow \mathrm{x}-3=12$
$\Rightarrow \mathrm{x}=3+12=15$
Hence the required number is 15
Ans. (c)
152. Let the fraction $=x$

And Correct answer $=y$
$\therefore \quad$ Given $\frac{16}{17} \mathrm{x}=\mathrm{y} \rightarrow(1)$ and $\frac{x}{\frac{16}{17}}=y+\frac{33}{340}$
i.e. $\frac{17}{16} x=y+\frac{33}{340} \rightarrow(2)$
(1) $\Rightarrow x=\frac{17}{16} y$

Substitute x the value of x in equation (2)

$$
\begin{aligned}
& \frac{17}{16} \times \frac{17}{16} y=y+\frac{33}{340} \\
& \frac{289}{256} y=y+\frac{33}{340}
\end{aligned}
$$

ANSWERS

$\frac{289}{256} y-y=\frac{33}{340}$
$\left(\frac{289-256}{256}\right) y=\frac{33}{340}$
$\frac{33}{256} y=\frac{33}{340}$
$y=\frac{33}{340} \times \frac{256}{33}$
$y=\frac{64}{85}$
Ans. (a)
153. Let the number be x

Given $\frac{5}{7}\left[\frac{4}{15}(\mathrm{x})\right]=8+\frac{2}{5}\left[\frac{4}{9}(\mathrm{x})\right]$
$\frac{4}{21} x=8+\frac{8}{45} x$
$\frac{4}{21} x-\frac{8}{45} x=8$
$\left(\frac{180-168}{945}\right) x=8$
$\frac{12}{945} x=8$
$x=8 \times \frac{945}{12}$
$\mathrm{x}=708.75$
Ans. (d)
154. Let two numbers are x and y

Given condition $\mathrm{x}+\mathrm{y}=14 \rightarrow(1)$

$$
y-x=10 \rightarrow(2)
$$

Adding (1) and (2) $\Rightarrow 2 \mathrm{x}=24$
$\mathrm{x}=12$
(1) $\Rightarrow 12+y=14$

$$
y=2
$$

\therefore Product of two numbers $=\mathrm{x} \times \mathrm{y}=12 \times 2=24$
Ans. (a)
155. Let two numbers are x and y.

Given $\quad x-y=11 \rightarrow(1)$
And $\quad \frac{x+y}{5}=9$
i.e. $x+y=45 \rightarrow(2)$

Adding (1) and (2) $\Rightarrow 2 x=56$

$$
X=28
$$

(1) $\Rightarrow 28-y=11$

$$
-y=11-28
$$

$$
=-17
$$

$$
y=17
$$

\therefore The two numbers are 28,17 .
Ans. (d)
156. Sub duplicate Ratio of $16: 49=\sqrt{16}: \sqrt{49}$
$=4: 7$
Ans. (a)
157. Duplicate Ratio of $4: 5=4^{2}: 5^{2}$
$=16: 25$
Ans. (a)
158. Triplicate Ratio of $3: 5=3^{3}: 5^{3}$

$$
=\quad 27: 125
$$

Ans. (a)
159. The sub - triplicate Ratio of $8: 125=\sqrt[3]{8}: \sqrt[3]{125}$

$$
=2: 5
$$

Ans. (b)
160. 4 th Proportion of 6,8 and 15 is $\frac{6}{8}=\frac{15}{x}$
$6 x=15 \times 8$

ANSWERS

$$
\begin{aligned}
\mathrm{x} & =\frac{15 \times 8}{6} \\
& =20
\end{aligned}
$$

Ans. (c)
161. Let the two numbers be x and y. According to the First condition of the problem,
$\frac{x}{y}=\frac{4}{1}$
$\Rightarrow \quad \mathrm{x}=4 \mathrm{y} \quad \rightarrow(1)$
According to the second condition of the problem,
$\frac{x+5}{y+5}=\frac{3}{1}$
$x+5=3(y+5)$
$x+5=3 y+15$
$\mathrm{x}-3 \mathrm{y}=15-5=10 \rightarrow(2)$
Put $x=4 y$ from (1) in (2), we get
$4 y-3 y=10$
$y=10$
(1) $\Rightarrow \mathrm{x}=4(10)=40$

Hence the required numbers are 40 and 10 .
Ans. (b)
162. Let A having money $=3 \mathrm{x}$
B having money $=4 x$
C having money $=5 x$
Given $\quad 3 \mathrm{x}=300$
$\mathrm{x}=100$
$\therefore \quad C=5 x=5 \times 100=500$
Ans. (c)
163. Let the two numbers be x and y. According to the first condition of the problem.
$\frac{x}{y}=\frac{5}{6}$
$6 x=5 y$
$6 \mathrm{x}-5 \mathrm{y}=0 \quad \rightarrow(1)$

According to the second condition of the problem
$\frac{x-5}{y-5}=\frac{4}{5}$
$5(x-5)=4(y-5)$
$5 x-25=4 y-20$
$5 \mathrm{x}-4 \mathrm{y}=5 \quad \rightarrow(2)$
(1) $\times 5 \Rightarrow 30 x-25 y=0 \rightarrow(3)$
(2) $\times 5 \Rightarrow 30 x-24 y=30$

Subtracting (3) from (4), we get
$y=30$
(1) $\Rightarrow 6 x-5(30)=0$
$6 x=150$
$x=\frac{150}{6}=25$
Hence the required numbers are 25 and 30
Ans. (c)
164. Let the given numbers be x and y . Then according to the given conditions of the problem.

```
\(\frac{x+1}{y+1}=\frac{1}{2}\)
\(\Rightarrow \quad 2 x+2=y+1\)
    \(2 \mathrm{x}-\mathrm{y}=-1 \quad \rightarrow(1)\)
and \(\frac{x-5}{y-5}=\frac{5}{11}\)
\(11 \mathrm{x}-55=5 \mathrm{y}-25\)
\(11 \mathrm{x}-5 \mathrm{y}=30 \quad \rightarrow(2)\)
\(\therefore \quad(1) \times 11 \Rightarrow 22 x-11 y=-11 \quad \rightarrow(3)\)
    \((2) \times 2 \Rightarrow 22 x-10 y=60 \rightarrow(4)\)
(3) \(-(4) \Rightarrow-y=-71\)
    \(y=71\)
(1) \(\Rightarrow 2 \mathrm{x}-71=-1\)
    \(2 \mathrm{x}=70\)
```


ANSWERS

$$
x=35
$$

Hence, the required numbers are 35 and 71
Ans. (b)
165. Let the number to be subtracted be x.

Then according to the problem

$$
\begin{gathered}
\frac{27-x}{43-x}=\frac{7}{15} \\
\Rightarrow \quad 15(27-x)=7(43-x) \\
\Rightarrow \quad 405-15 x=301-7 x \\
15 x-7 x=405-301 \\
8 x=104 \\
x=\frac{104}{8}=13
\end{gathered}
$$

Hence the required number is 13
Ans. (a)
166. Let the unit digit $=\mathrm{x}$
and ten digits $=y$
$\therefore \mathrm{x}+\mathrm{y}=3 \quad \rightarrow$ (1)
and the number $=10 y+x$
Reversing the order of digits
Units digit $=y$
and ten's digit $=\mathrm{x}$
\therefore Number $=10 \mathrm{x}+\mathrm{y}$
According to the given condition of the problem
$7(10 y+x)=4(10 x+y)$
$70 y+7 x=40 x+4 y$
$70 x-40 x+70 y-4 y=0$
$-33 x+66 y=0$
$-\mathrm{x}+2 \mathrm{y}=0 \quad \rightarrow 92$)
Adding (1) and (2) we get
$3 y=3$
$y=1$
(1) $\Rightarrow x+1=3$
$\mathrm{x}=3-1=2$
Hence, the required number is 12
Ans. (c)
167. The committee of six must include atleast 2 ladies.
i.e. two or more ladies. As there are only 3 ladies, the following possibilities arise:

The committee of 6 consists of
(i) 4 men and 2 ladies, (ii) 3 men and 3 ladies.

The number of ways for (i) $={ }^{7} \mathrm{C}_{4}+{ }^{3} \mathrm{C}_{2}$
$=35 \times 3=105$
The number of ways for (ii) $={ }^{7} \mathrm{C}_{3} \times{ }^{3} \mathrm{C}_{3}$
$=35 \times 1$
$=35$
Hence the total number of ways of forming a committee so as to include atleast two ladies $=105+35=140$

Ans. (a)
168. We have $\mathrm{nCr}=\frac{\mathrm{n}!}{\mathrm{r}!(\mathrm{n}-4)!}$

Now substituting for n and r , we get
${ }^{28} \mathrm{C}_{2 \mathrm{r}}=\frac{28!}{(2 \mathrm{r})!(28-2 \mathrm{r})!}$
$24 \mathrm{C}_{2 \mathrm{r}-4}=\frac{24!}{(2 \mathrm{r}-4)!\{24-(2 \mathrm{r}-4)\}!}$
$=\frac{24!}{(2 r-4)!(28-2 r)!}$
Given $28_{C_{2 r}}: 24_{C_{2 r-4}}=225: 11$
$\Rightarrow \quad \frac{28_{\mathrm{C}_{2 \mathrm{r}}}}{24_{\mathrm{C}_{2 \mathrm{r}-4}}}=\frac{28!}{(2 \mathrm{r})!(28-2 \mathrm{r})!} \div \frac{(2 \mathrm{r}-4)!(28-2 \mathrm{r})!}{24!}$
$=\frac{28 \times 27 \times 26 \times 25 \times 24!}{2 \mathrm{r}(2 \mathrm{r}-1)(2 \mathrm{r}-2)(2 \mathrm{r}-3)(2 \mathrm{r}-4)!(28-2 \mathrm{r})!} \times \frac{(2 \mathrm{r}-4)!(28-2 \mathrm{r})!}{24!}$
$=\frac{28 \times 27 \times 26 \times 25}{2 \mathrm{r}(2 \mathrm{r}-1)(2 \mathrm{r}-2)(2 \mathrm{r}-3)}=\frac{225}{11}$

ANSWERS

$\Rightarrow \quad 2 \mathrm{r}(2 \mathrm{r}-1)(2 \mathrm{r}-2)(2 \mathrm{r}-3)=\frac{11 \times 28 \times 27 \times 26 \times 25}{225}$
$=\quad 11 \times 28 \times 3 \times 26$
$=\quad 11 \times 7 \times 4 \times 3 \times 13 \times 2$
$=\quad 11 \times 12 \times 13 \times 14$
$=\quad 14 \times 13 \times 12 \times 11$
$\therefore \quad 2 r=14$
$r=7$
Ans. (b)
169. Let in the number unit's digit $=x$
and ten's digit $=y$
$\therefore \quad$ Number $=10 \mathrm{y}+\mathrm{x}$
According to the given conditions of the problem,
$8(x+y)+1=10 y+x$
(or) $8 x+8 y+1=10 y+x$
$\Rightarrow \quad 8 x-x+8 y-10 y+1=0$
$7 x-2 y+1=0 \rightarrow(1)$
and $13(y-x)+2=10 y+x$
$13 y-13 x+2=10 y+x$
$\Rightarrow \quad x+13 x+10 y-13 y-2=0$
$\Rightarrow 14 \mathrm{x}-3 \mathrm{y}-2=0 \quad \rightarrow(2)$
$(1) \times 2 \Rightarrow 14 x-4 y+2=0 \quad \rightarrow(3)$
(2) $-(3) \Rightarrow y-4=0$
$y=4$
Put $y=4$ in (1), we get
$7 \mathrm{x}-8+1=0$
$7 \mathrm{x}=7$
$\mathrm{x}=1$
Hence, the required number is 41
Ans. (b)
170. We want to find out the number of combination of 12 things taken 3 at a time and this is by:

$$
\begin{aligned}
& { }^{12}{ }_{C_{3}}=\frac{12!}{3!(12-3)!} \\
& =\frac{12!}{3!9!}=\frac{12 \times 11 \times 10 \times 9!}{3!9!} \\
& =\frac{12 \times 11 \times 10}{3 \times 2} \\
& =220
\end{aligned}
$$

Ans. (c)
171. Ans. (a)
172. $\underset{\mathrm{x} \rightarrow 9}{\operatorname{Lt}} \frac{\sqrt{\mathrm{x}}-3}{\mathrm{x}-9}=\underset{\mathrm{x} \rightarrow 9}{\operatorname{Lt}} \frac{\sqrt{\mathrm{x}}-3}{\sqrt{\mathrm{x}}-3} \frac{1}{\sqrt{\mathrm{x}}+3}$

App $\mathrm{lt}=\frac{1}{3+3}=\frac{1}{6}$
Ans. (a) $\frac{1}{6}$
173. $\underset{x \rightarrow 9}{\operatorname{Lt}} \frac{\sqrt{x+0}-\sqrt{2 a}}{x-0} \Rightarrow \underset{x \rightarrow 9}{\operatorname{Lt}} \frac{\sqrt{x+a}-\sqrt{2 a}}{x-0} \times \frac{(\sqrt{x+a}-\sqrt{2 a})}{(\sqrt{x+a}+\sqrt{2 a})}$
$\Rightarrow \operatorname{Lt}_{x \rightarrow 9} \frac{x+a-2 a}{(x-a)(\sqrt{x+a}+\sqrt{2 a})}=\operatorname{Ltt}_{x \rightarrow a} \frac{(x-a)}{(x-a)(\sqrt{x+a}+\sqrt{2 a})}$
App Lt
$\frac{1}{(\sqrt{a+a}+\sqrt{2 a})}=\frac{1}{2 \sqrt{2 a}}$
Ans. (b) $\frac{1}{2 \sqrt{2 a}}$
174. $\operatorname{Lt}_{x \rightarrow \infty} \frac{6+5 \mathrm{x}^{2}}{4 \mathrm{x}+15 \mathrm{x}^{2}} \Rightarrow \underset{\mathrm{x} \rightarrow \infty}{\operatorname{Lt}} \mathrm{x}^{2} \frac{\left(5+\frac{6}{\mathrm{x}^{2}}\right)}{\mathrm{x}^{2}\left(15+\frac{4}{\mathrm{x}}\right)}$

App Lt.
$\Rightarrow \quad \frac{5+0}{15+0}=\frac{1}{3}$
Ans. (c) $\frac{1}{3}$

ANSWERS

175. $\operatorname{Lt}_{x \rightarrow \infty} \frac{a-b x}{x^{2}} \Rightarrow \operatorname{Lt}_{x \rightarrow \infty}\left(\frac{a}{x^{2}}-\frac{b}{x}\right)$

App Lt.
$\Rightarrow(0 \ldots 0)=0$
Ans.(a) 0
176. $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \Rightarrow \frac{d y}{d x}=\frac{\left(e^{x}+e^{-x}\right) \frac{d}{d x}\left(e^{x}-e^{-x}\right)-\left(e^{x}-e^{-x}\right) \cdot \frac{d}{d x}\left(e^{x}+e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}}$
$=\frac{\left(e^{x}+e^{-x}\right)\left(e^{x}+e^{-x}\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}}$
$=\frac{e^{2 x}+e^{-2 x}+2-e^{2 x}-e^{-2 x}+2}{\left(e^{x}+e^{-x}\right)^{2}}=\frac{4}{\left(e^{x}+e^{-x}\right)^{2}}$
Ans. (b) $\frac{4}{\left(e^{x}+e^{-x}\right)^{2}}$
177. $y=\frac{x}{(1+x)^{2}} \Rightarrow \frac{d y}{d x}=\frac{(1+x)^{2} \frac{d}{d x} x-x \frac{d}{d x}(1+x)^{2}}{(1+x)^{4}}$
$\Rightarrow \frac{(1+x)^{2} \cdot 1-x \cdot 2(1+x)}{(1+x)^{4}}=\frac{1+x^{2}+2 x-2 x-2 x^{2}}{(1+x)^{4}}$
$=\frac{1-x^{2}}{(1+x)^{4}}=\frac{1-x}{(1+x)^{3}}$
Ans. (b) $\frac{1-x}{(1+x)^{3}}$
178. $y=\sqrt{x+\sqrt{x}}$

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{t}^{1 / 2} \cdot \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x}+\sqrt{\mathrm{x}}) \\
& =\frac{1}{2(\sqrt{\mathrm{x}+\sqrt{\mathrm{x}}})} \cdot\left(1+\frac{1}{2 \sqrt{\mathrm{x}}}\right)
\end{aligned}
$$

$=\frac{2 \sqrt{x}+1}{4 \sqrt{x} \sqrt{x+\sqrt{x}}}$
Ans. (a) $\frac{2 \sqrt{x}+1}{4 \sqrt{x} \sqrt{x+\sqrt{x}}}$
179. $y=7^{x^{2}+2 x}$
$\frac{d y}{d x}=\frac{d}{d t} 7^{t} \cdot \frac{d}{d x}\left(x^{2}+2 x\right)$
$=7^{x^{2}+2 x} \cdot \log 7 \cdot(2 x+2)$
$\frac{d y}{d x}=2(x+1) \cdot 7^{x^{2}+2} \cdot \log 7$
Ans. (b) $2(x+1) \cdot 7^{x^{2}+2} \cdot \log 7$
180. $y=\log \left(x+\sqrt{x^{2}+a^{2}}\right)$
$\frac{d y}{d x}=\frac{d}{d t} \log t \cdot \frac{d}{d x}\left(x+\sqrt{x^{2}+a^{2}}\right)$
$=\frac{1}{x+\sqrt{x^{2}+a^{2}}} \cdot\left[1+\frac{1}{2 \sqrt{x^{2}+a^{2}}} \cdot 2 x\right]$
$=\frac{\left(\sqrt{x^{2}+a^{2}}+x\right)}{\sqrt{x^{2}+a^{2}}\left(x+\sqrt{x^{2}+a^{2}}\right)}$
$\frac{d y}{d x}=\frac{1}{\sqrt{x^{2}+a^{2}}}$
Ans. (a) $\frac{1}{\sqrt{x^{2}+a^{2}}}$
181. Given $(x-y) e^{\frac{x}{x-y}}=a$

Differentiate on both sides.

ANSWERS

$$
\begin{aligned}
& (x-y) \cdot e^{\frac{x}{x-y}}\left[\frac{(x-y)(1)-x \cdot\left(1-\frac{d y}{d x}\right)}{(x-y)^{2}}\right]+e^{\frac{x}{x-y}}\left(1-\frac{d y}{d x}\right)=0 \\
& e^{\frac{x}{x-y}}\left[\frac{x-y-x+x \frac{d y}{d x}}{(x-y)}+1-\frac{d y}{d x}\right]=0 \\
& \frac{-y+x \frac{d y}{d x}}{(x-y)}+1-\frac{d y}{d x}=0 \\
& \frac{-y}{x-y}+\frac{x}{x-y} \frac{d y}{d x}+1-\frac{d y}{d x}=0 \\
& \frac{d y}{d x}\left[\frac{x}{x-y}-1\right]=\frac{y}{x-y}-1 \\
& \frac{d y}{d x}\left[\frac{x-x+y}{x-y}\right]=\frac{y-x+y}{x-y} \\
& \frac{d y}{d x}\left[\frac{y}{x-y}\right]=\frac{2 y-x}{x-y} \\
& \frac{d y}{d x}=\frac{2 y-x}{y} \\
& \therefore \quad y \frac{d y}{d x}+x=y\left[\frac{2 y-x}{y}\right]+x \\
& =\quad 2 y-x+x \\
& y \frac{d y}{d x}+x=2 y
\end{aligned}
$$

Ans. (c)
182. Given demand law $\mathrm{x}=\sqrt{10-\mathrm{p}^{2}}$

$$
\begin{aligned}
& \mathrm{x}=\left(10-\mathrm{p}^{2}\right)^{1 / 2} \\
& \frac{\mathrm{dx}}{\mathrm{dp}}=\frac{1}{2}\left(10-\mathrm{p}^{2}\right)^{\frac{1}{2}-1}(-2 \mathrm{p})
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1(-2 \mathrm{p})}{2 \sqrt{10-\mathrm{p}^{2}}} \\
& \frac{\mathrm{dx}}{\mathrm{dp}}=\frac{-\mathrm{p}}{\sqrt{10-\mathrm{p}^{2}}} \\
& |\mathrm{ed}|=\frac{\mathrm{p}}{\mathrm{x}} \cdot \frac{\mathrm{dx}}{\mathrm{dp}} \\
& =\frac{\mathrm{p}}{(10-\mathrm{p})^{1 / 2}} \cdot \frac{-\mathrm{p}}{2 \sqrt{10-\mathrm{p}^{2}}}
\end{aligned}
$$

when $\mathrm{p}=2$
$|\mathrm{ed}|=\frac{2}{\sqrt{6}} \cdot \frac{-2}{\sqrt{6}}$
ed $=-2 / 3$
$|\mathrm{ed}|=\frac{2}{3}$
Ans. (a)
Alternate
183. $\therefore \int \frac{\mathrm{x}^{3}}{\mathrm{x}+1} \mathrm{dx}$
$=\int\left(x^{3}-x+1-\frac{1}{x+1}\right) d x$
$=\frac{x^{3}}{3}-\frac{x^{2}}{2}+x-\log (x+1)+c$
Ans. (c)
184. $\int\left(\frac{e^{4 x}+e^{2 x}}{e^{3 x}}\right) d x$
$=\int\left(\frac{e^{4 x}}{e^{3 x}}+\frac{e^{2 x}}{e^{3 x}}\right) d x$
$=\int e^{x} d x+\int e^{-x} d x$
$=\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}+\mathrm{c}$
Ans. (b)

ANSWERS

185. $\int \frac{x^{4}+1}{x^{2}+1} d x=\int\left(x^{2}-1+\frac{2}{x^{2}+1}\right) d x$
$=\int x^{2} d x-\int d x+2 \int \frac{1}{x^{2}+1} d x$
$=\frac{x^{3}}{3}-x+2 \tan ^{-1} x+c$
Ans. (c)
186. Let $\mathrm{I}=\int \log (\mathrm{x}+1) \mathrm{dx}$
$\therefore \quad \mathrm{I}=\int \log (\mathrm{x}+1) \cdot 1 \mathrm{dx}$
Integrating by parts
[Here $\log (x+1)$ is to be taken as first function and unity as second function]
I = $\left[\log (x+1]\right.$ integral of I^{\prime} ' - integral of
$\left[\mathrm{d} / \mathrm{dx}(\log (\mathrm{x}+1)]+\right.$ integral of $\left.\mathrm{I}^{\prime} \mathrm{l}\right]$
$=\quad \log (x+1) \cdot x-\int \frac{1}{x+1} \cdot x d x$
$=x \log (x+1)-\int \frac{x+1-1}{x+1} d x$
$=x \log (x+1)-\int\left(1-\frac{1}{x+1}\right) d x$
$=x \log (x+1)-[x-\log (x+1)]$
$\mathrm{I}=\mathrm{x} \log (\mathrm{x}+1)-\mathrm{x}+\log (\mathrm{x}+1)+\mathrm{c}$

Ans. (a)
187. Consider $\frac{1}{\sqrt{x}+\sqrt{1+x}}=\frac{\sqrt{x}-\sqrt{1+x}}{x-(1+x)}$

$$
\begin{aligned}
& =\quad \sqrt{1+x}-\sqrt{x} \\
& \therefore \quad I=\int \frac{d x}{\sqrt{x}+\sqrt{1+x}} \\
& =\quad \int \sqrt{1+x} d x-\int \sqrt{x} d x \\
& I=I_{1}-I_{2} \\
& I_{1}=\int \sqrt{1+x} d x
\end{aligned}
$$

Let $\mathrm{z}=1+\mathrm{x}$
$d z=d x$
$\therefore \mathrm{I}_{1}=\int \sqrt{1+\mathrm{x}} \mathrm{dx}=\int \sqrt{\mathrm{z}} \mathrm{dz}$
$=\frac{2}{3} z^{3 / 2}$
$=\frac{2}{3}(1+x)^{3 / 2}$
$\therefore I=2 / 3(1+x)^{3 / 2}-\frac{x^{3 / 2}}{3 / 2}+c$
$\mathrm{I}=2 / 3\left\{(1+\mathrm{x})^{3 / 2}-\mathrm{x}^{3 / 2}\right\}+\mathrm{c}$
Ans. (b)
188. Consider $x^{3}+x^{2}-2 x=x\left(x^{2}+x-2\right)$
$=x\left(x^{2}+2 x-x-2\right)$
$=x\{x(x+2)-(x+2)\}$
$=x(x-1)(x+2)$
\therefore We may write $\frac{x^{2}-x+2}{x^{3}+x^{2}-2 x}=\frac{x^{2}-x+2}{x(x-1)(x+2)}$
Let $\frac{x^{2}-x+2}{x(x-1)(x+2)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+2}$
(or) $\mathrm{x}^{2}-\mathrm{x}+2=\mathrm{A}(\mathrm{x}-1)(\mathrm{x}+2)+\mathrm{Bx}(\mathrm{x}+2)+\mathrm{Cx}(\mathrm{x}-1)$
Substituting $x=1$, We find 2 $=3 B$
$B=2 / 3$
Substituting $\mathrm{x}=-2$, We find $8=6 \mathrm{c}$
i.e. $C=4 / 3$

Substituting $x=0$, We find $2=-2 A$
$A=-1$
$\therefore I=\int \frac{x^{2}-x+2}{x^{3}+x^{2}-2 x} d x=-\int \frac{d x}{x}+\frac{2}{3} \int \frac{d x}{x-1}+\frac{4}{3} \int \frac{d x}{x+2}$
$I=-\log x+2 / 3 \log (x-1)+4 / 3 \log (x+2)+\log c$
Ans. (c)

ANSWERS

189. Let $I=\int \frac{1}{3 x^{2}+13 x-10} d x$
$=\frac{1}{3} \int \frac{1}{x^{2}+\frac{13 x}{3}-\frac{10}{3}} d x$
$=\frac{1}{3} \int \frac{1}{\left[x^{2}+2 \cdot \frac{13}{6} x+\left(\frac{13}{6}\right)^{2}\right]-\left(\frac{13}{6}\right)^{2}-\frac{10}{3}} d x$
$=\frac{1}{3} \int \frac{1}{(x+13 / 6)^{2}-\frac{289}{36}} d x$
Let $\mathrm{t}=\mathrm{x}+13 / 6$
$\therefore \mathrm{dt}=\mathrm{dx}$
$\therefore \mathrm{I}=1 / 3 \quad \int \frac{1}{\mathrm{t}^{2}-(17 / 6)^{2}} \mathrm{dt}$
$=\frac{1}{3} \cdot \frac{1}{2(17 / 6)} \log \left[\frac{\mathrm{t}-17 / 6}{\mathrm{t}+17 / 6}\right]$
$=\frac{1}{17} \log \left[\frac{6 t-17}{6 t+17}\right]$
$=\frac{1}{17} \log \left[\frac{6(x+13 / 6)-17}{6\left(x+\frac{13}{6}\right)+17}\right]$
$=\frac{1}{17} \log \left[\frac{3 x-2}{3 x+15}\right]+c$
Ans. (b)
190. $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$

By the method of integration by parts, we may write

$$
\begin{aligned}
& \int e^{x} f(x) d x=f(x) \int e^{x} d x-\int\left\{\frac{d}{d x} f(x) \int e x d x\right\} d x \\
& =\quad e^{x} f(x)-\int e^{x} f^{\prime}(x) d x
\end{aligned}
$$

Transposing $\int e^{x} f(x) d x+\int e^{x} f^{\prime}(x) d x=e^{x} f(x)$
(or) $\int \mathrm{e}^{\mathrm{x}}\left\{\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right\} \mathrm{dx}=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})$
Ans. (a)
191. $\int_{a}^{b} \frac{\log x}{x} d x \quad$ Let $\log x=t \quad x=a, t=\log a$

$$
\frac{1}{\mathrm{x}}=\frac{\mathrm{dt}}{\mathrm{dx}} \quad \mathrm{x}=\mathrm{b}, \mathrm{t}=\log \mathrm{b}
$$

$\int_{\log b}^{\log a} \mathrm{t} . \mathrm{dt} . \Rightarrow\left[\frac{\mathrm{t}^{2}}{2}\right]_{\log a}^{\log b}$
$\Rightarrow \frac{1}{2}\left\lfloor(\log b)^{2}-(\log a)^{2}\right\rfloor \Rightarrow \frac{1}{2}\left[\log (a b) \cdot \log \left(\frac{b}{a}\right)\right]$
Ans. (a) $\frac{1}{2}\left[\log (a b) \cdot \log \left(\frac{b}{a}\right)\right]$
192. $\int[f(x)+f(-x)][g(x)-g(-x)] d x$
$\Rightarrow \quad \int 0 \cdot[\mathrm{~g}(\mathrm{x})-\mathrm{g}(-\mathrm{x})] \mathrm{dx} \Rightarrow 0$
Ans. (a) 0
193. $\int_{a}^{b} \frac{d x}{(a+b-x)^{2 / 3}} \quad$ Let $a+b-x=t \quad x=a, t=b$

$$
-1=\frac{d t}{d x} \quad x=b, t=a
$$

$\Rightarrow-\int_{b}^{a} \mathrm{t}^{-2 / 3} \mathrm{dt} \Rightarrow \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{t}^{-2 / 3} \mathrm{dt}$
$\Rightarrow 3\left[t^{1 / 3}\right]_{a}^{b} \Rightarrow 3\left[b^{1 / 3}-a^{1 / 3}\right]$
Ans. (b) $3 .\left[b^{1 / 3}-a^{1 / 3}\right]$
194. $\mathrm{I}=\int_{0}^{2} \frac{\sqrt{\mathrm{x}}}{\sqrt{\mathrm{x}}+\sqrt{2-\mathrm{x}}} \mathrm{dx}$
$I=\int_{0}^{2} \frac{\sqrt{2-x}}{\sqrt{2-x}+\sqrt{x}}$
... (ii) $[f(x)=f(a-x)]$

ANSWERS

$$
\begin{aligned}
& 2 \mathrm{I}=\int_{0}^{2} \mathrm{dx}=[\mathrm{x}]_{0}^{2}=2 \\
& \therefore \quad \mathrm{I}=\frac{1}{2} \times 2=1
\end{aligned}
$$

Ans. (a) 1
195. $I=\int_{0}^{1} \log \left(\frac{1}{x}-1\right) d x \Rightarrow \int_{0}^{1} \log \left(\frac{1-x}{x}\right) d x$
$I=\int_{0}^{1} \log \left(\frac{1-1+x}{1-x}\right) d x \quad[f(x)=f(a-x)]$
$I=\int_{0}^{1} \log \frac{x}{1-x} \Rightarrow-\int_{0}^{1} \log \left(\frac{1-x}{x}\right) d x$
$2 \mathrm{I}=0 \quad \therefore \mathrm{I}=0$
Ans. (c) 0
196. No. of ways in which 7 dept distributed among 3 minister
$=\left(7_{\mathrm{C}_{3}} \times 4_{\mathrm{C}_{3}} \times 1\right)+\left(7_{\mathrm{C}_{3}} \times 4_{\mathrm{C}_{2}} \mathrm{x}\right) \times 3$!
$=(120+330) \times 6=1980$
Ans. (d) None of these
197. No. of selections of letters
(i) 2 like and 1 different $=3_{\mathrm{C}_{1}} \times 2_{\mathrm{C}_{1}}=3 \times 2=6$
(ii) 3 different $=5_{\mathrm{C}_{3}}=10$
\therefore Total no. of ways of selection letters $=16$
\therefore Total words $=16 \times 3!=96$ words.
Ans. (b) 96
198. No. of ways to form three digit nos. by using $(1,2,3,4,3,2)$ are -42 .

Ans. (b) 42
199. $\mathrm{S}_{\mathrm{n}}+\mathrm{S}_{\mathrm{n}-2}-2 . \mathrm{S}_{\mathrm{n}-1}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]+\frac{\mathrm{n}-2}{2}[2 \mathrm{a}+(\mathrm{n}-2-1) \mathrm{d}]$
...2. $\frac{\mathrm{n}-1}{2}[2 \mathrm{a}+(\mathrm{n}-1-1) \mathrm{d}]$

$$
\begin{aligned}
& =\frac{n}{2}[2 a+(n-1) d]+\left(\frac{n-2}{2}\right)[2 a+(n-3) d]-(n-1)[2 a+(n-2) d] \\
& =a n+\frac{(n-1) n}{2} d+a(n-2)+\frac{(n-3)(n-2)}{2} d-2 a(n-1)-(n-1)(n-2) d \\
& =\quad d\left[\frac{(n-1)}{2} n+\frac{(n-3)(n-2)}{2}-(n-1)(n-2)\right] \\
& =\quad d\left(\frac{n^{2}-n+n^{2}-5 n^{2}+6-2 n^{2}-4+6 n}{2}\right) \\
& =\frac{2 d}{2}=d
\end{aligned}
$$

Ans. (a) d
200. $\frac{\mathrm{A} 3}{\mathrm{~A}(\mathrm{n}-1)}=\frac{1}{3}$
$\frac{a+3 d}{a+(n-1) d}=\frac{1}{3} \Rightarrow(3+3 d) 3=3+(n-1) d$
$\therefore \quad d=\frac{6}{n-10}$
$\therefore \quad 7 \mathrm{n}=\mathrm{a}+(\mathrm{N} \ldots 1) \mathrm{d} \Rightarrow 31=3+(\mathrm{n}+2-1) \frac{6}{\mathrm{n}-10}$
$28=(\mathrm{n}+1) \frac{6}{\mathrm{n}-10} \therefore \mathrm{n}=13$
Ans. (c) 13

Model Test Paper - BOS/CPT - 8

151. The first no. divide by 8 between 100 and 200 is 104

The last no. divide by 8 between 100 and 200 is 200
\therefore The total number divide by 104 and 200 is 13 .
All number divide by 8 also divide by 2 is 13
Ans. (b)
152. Sum of 1 st n odd number

ANSWERS

$\mathrm{S}=1+3+5+\ldots+(2 \mathrm{n}-1)$
Since $S=\frac{n}{2}[2 a+(n-1) d]$
$\mathrm{S}=\mathrm{n} / 2[2.1+(\mathrm{n}-1) 2]$

$$
=n(1+n-1)
$$

$$
=n(n)
$$

$\mathrm{S}=\mathrm{n}^{2}$
Ans. (a)
153. Let the number be x .

According to the given condition of the problem is
$36 \mathrm{x}=\mathrm{x}+1050$
$36 \mathrm{x}=1050$
$\mathrm{x}=\frac{1050}{35}$
$\mathrm{x}=30$
Ans. (b)
154. The formula is $1^{3}+2^{3}+3^{3}+\ldots \ldots . .+n^{3}=\left\{\frac{n(n+1)}{2}\right\}^{2}$

$$
\begin{aligned}
\therefore \quad & 1^{3}+2^{3}+3^{3}+\ldots \ldots . .+12^{3}=\left\{\frac{12(12+1)}{2}\right\}^{2} \\
& =[6(13)]^{2} \\
& =[78]^{2}=6084
\end{aligned}
$$

Ans. (c)
155. Let $S=1+9+24+46+75+\ldots \ldots . .+t_{n}$
shifting 1 places to the right in the RHS
$\mathrm{S}=1+9+24+46+75+\ldots \ldots \mathrm{t}_{\mathrm{n}-1}+\mathrm{t}_{\mathrm{n}}$
subtracting term by term,
$0=1+8+15+22+29+$ $+\left(t_{n}-t_{n-1}\right)-t_{n}$

Transposing
$t_{n}=1+8+15+22+29+$ \qquad to $\mathrm{n}^{\text {th }}$ term
$=\frac{\mathrm{n}}{2}\{2.1+(\mathrm{n}-1) 7\}$
$=\frac{7}{2} n^{2}-\frac{5}{2} n$
Now $\mathrm{Sn}=\sum \mathrm{tn}=\frac{7}{2} \sum \mathrm{n}^{2}-\frac{5}{2} \sum \mathrm{n}$
$=\frac{7}{2} \frac{n(n+1)(2 n+1)}{6}-\frac{5}{2} \frac{n(n+1)}{2}$
$=\frac{\mathrm{n}(\mathrm{n}+1)}{2}\left\{\frac{7}{6}(2 \mathrm{n}+1)-\frac{5}{2}\right\}$
$=\frac{\mathrm{n}(\mathrm{n}+1)}{2}\left(\frac{7}{3} \mathrm{n}-\frac{4}{3}\right)$
$\mathrm{Sn}=\frac{\mathrm{n}(\mathrm{n}+1)(7 \mathrm{n}-4)}{6}$
Ans. (a)
156. Let the number to be added be x then according to the problem.
$\frac{83+\mathrm{x}}{263+\mathrm{x}}=\frac{1}{3}^{\prime}$
$3(83+x)=263+x$
$249+3 x=263+x$
$3 x-x=263-249$
$2 \mathrm{x}=14$
$x=\frac{14}{2}=7$
Hence the required number is 7
Ans. (c)
157. Initially, let the number of employees be 9 and wages per head be Rs. 14. Then, total wages bill $=$ Rs. $(9 \times 14)=$ Rs. 126

Further, the number of employees becomes 8 and the wages per head becomes Rs. 15.
\therefore Now total wages bill $=$ Rs. $(8 \times 15)=$ Rs. 120
\therefore Ratio of the wages bill $=126: 120$
$=21: 20$
Thus the wages bill is decreased in the ratio 21:20
Ans. (c)

ANSWERS

158. Let C gets Rs. $=\mathrm{x}$

Given $\quad B=1 / 4$ of $C=1 / 4(x)$

$$
\text { and } A=\frac{2}{3} \text { of } B=2 / 3(1 / 4 x)=\frac{1}{6} x
$$

Also, given $\frac{1}{6} x+\frac{1}{4} x+x=680$

$$
\begin{aligned}
& \frac{2 x+3 x+12 x}{12}=680 \\
& \frac{17 x}{12}=680 \\
& x=\frac{680 \times 12}{17}=480
\end{aligned}
$$

Ans. (c)
159. Let us assume that when x is added to each of the four given numbers, they become in proportion.
$\Rightarrow 10+\mathrm{x}: 18+\mathrm{x}=22+\mathrm{x}: 38+\mathrm{x}$
$\therefore \quad$ Product of the means $=$ Product of the extremes.
$\therefore \quad(10+\mathrm{x})(38+\mathrm{x})=(18+\mathrm{x})(22+\mathrm{x})$
$\Rightarrow \quad 380+48 \mathrm{x}+\mathrm{x}^{2}=396+40 \mathrm{x}+\mathrm{x}^{2}$
$8 \mathrm{x}=16$
$\mathrm{x}=2$
Required number $=2$
Ans. (a)
160. Let the required numbers be x and y. Since the mean proportional between a and c is given by the relation $b=\sqrt{a c}$
$\therefore \quad$ Mean proportional $=\sqrt{x y}$
According to the question,
$\sqrt{x y}=24$
$\mathrm{xy}=576 \rightarrow(1)$
Again suppose that the third proportional to x and y is z . Then
$x: y=y: z$

$$
\begin{aligned}
& \Rightarrow x: z=y: y \\
& x z=y^{2} \\
\Rightarrow & z=\frac{y^{2}}{x}
\end{aligned}
$$

According to the question,
$\frac{y^{2}}{x}=192$
$\Rightarrow \mathrm{y}^{2}=192 \mathrm{x} \quad \rightarrow(2)$
From equation (2), $\quad x=\frac{y^{2}}{192}$
Putting this value of x in equation (1)
$\frac{\mathrm{y}^{2}}{192} \cdot \mathrm{y}=576$
$\mathrm{y}^{3}=576 \times 192$
$=24 \times 24 \times 24 \times 8$
$=\quad 24 \times 24 \times 24 \times 2 \times 2 \times 2$
$y=(24 \times 24 \times 24 \times 2 \times 2 \times 2 \times 2)^{1 / 3}$
$=24 \times 2$
$y=48$
(1) $\Rightarrow x y=576$
$x(48)=576$
$x=\frac{576}{48}=8$
Hence the required number are 12 and 48.
Ans. (b)
161. $\operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}-2}{\mathrm{x}} \Rightarrow\left[\frac{\mathrm{e}^{\mathrm{x}-1}}{\mathrm{x}}+\frac{\left(\mathrm{e}^{-\mathrm{x}}-1\right.}{\mathrm{x}}\right]$
$\Rightarrow \underset{x \rightarrow 0}{\operatorname{Lt}}\left[\left(\frac{e^{x}-1}{x}\right)+\left(\frac{e^{-x}-1}{x}\right)\right] \quad\left\{\operatorname{Lt}_{x \rightarrow 0} \frac{e^{x}-1}{x}=1\right\}$
$1-1=0$
Ans. (b) 0

ANSWERS

162. $\operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}^{-1}}-1}{\mathrm{e}^{\mathrm{x}^{-1}}+1} \Rightarrow \operatorname{Lt}_{\mathrm{x} \rightarrow 0}\left(\frac{\mathrm{e}^{1 / \mathrm{x}}-1}{\mathrm{e}^{1 / \mathrm{x}}+1}\right)$
$R H L \underset{x \rightarrow 0^{+}}{\operatorname{Lt}}\left(\frac{\mathrm{e}^{1 / \mathrm{x}}-1}{\mathrm{e}^{1 / \mathrm{x}}+1}\right) \operatorname{App} \mathrm{Lt}=\frac{\infty}{\infty}$
\rightarrow RHL does not exist
LHL $\underset{x \rightarrow 0^{-}}{\operatorname{Lt}}\left(\frac{\mathrm{e}^{1 / \mathrm{x}}-1}{\mathrm{e}^{1 / \mathrm{x}}+1}\right) \quad \operatorname{App} \operatorname{Lt} \frac{\infty}{\infty}$
LHL does not exist.
\rightarrow Lt does not exist in $\mathrm{f}(\mathrm{x})$
Ans. (c) does not exist
163. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{3 x-|x|}{7 x-5|x|}$

RHL $\underset{x \rightarrow 0^{+}}{ } \frac{3 x-x}{7 x-5 x}=\frac{2 x}{2 x}=1$
LHL $\underset{x \rightarrow 0^{-}}{\operatorname{Lt}} \frac{3 x-(-x)}{7 x-5(-x)}=\frac{4 x}{12 x}=\frac{1}{3}$
LHL \neq RHS
$\therefore \mathrm{f}(\mathrm{x})$ does not exist at $\mathrm{x}=0$
Ans. (c) does not exist
164. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{e^{a x}-e^{b x}}{x} \Rightarrow \underset{x \rightarrow 0}{\operatorname{Lt}}\left[a \cdot \frac{\left(e^{a x}-1\right)}{a x}-b \frac{\left(e^{b x}-1\right)}{b x}\right]$
\Rightarrow a.1-b.1 $\Rightarrow \mathrm{a}-\mathrm{b} \quad\left\{\underset{\mathrm{x} \rightarrow 0}{\left.\operatorname{Lt} \frac{\mathrm{e}^{\mathrm{x}}-1}{\mathrm{x}}=1\right\}}\right.$
Ans. (a) a ... b
165. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{e^{x}-1}{\log (1+x)} \Rightarrow \underset{x \rightarrow 0}{\operatorname{Lt}}\left[\left(\frac{e^{x}-1}{x}\right) \cdot \frac{x}{\log (1+x)}\right]$
$\Rightarrow \underset{x \rightarrow 0}{\operatorname{Lt}}\left(\frac{e^{x}-1}{x}\right) \cdot \operatorname{Lt}_{x \rightarrow 0}^{\operatorname{Lt}} \frac{1}{\frac{\log (1+x)}{x}}$
$\Rightarrow 1.1=1$

Ans. (b) 1
166. Given $\mathrm{y}=\frac{\sqrt{1-\mathrm{x}}}{\sqrt{1+\mathrm{x}}}$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{(\sqrt{1+\mathrm{x}}) \frac{\mathrm{d}}{\mathrm{dx}}(\sqrt{1-\mathrm{x}})-(\sqrt{1-\mathrm{x}}) \frac{\mathrm{d}}{\mathrm{dx}}(\sqrt{1+\mathrm{x}})}{(\sqrt{1+\mathrm{x}})^{2}}$
$=\frac{(\sqrt{1+x})\left[\frac{1}{2}(1-x)^{\frac{1}{2}-1}(-1)\right]-(\sqrt{1-x})\left[\frac{1}{2}(1+x)^{\frac{1}{2}-1}\right]}{(1+x)}$
$=\frac{-\frac{1}{2} \frac{\sqrt{1+x}}{\sqrt{1-x}}-\frac{1}{2} \frac{\sqrt{1-x}}{\sqrt{1+x}}}{(1+x)}$
$=-\frac{1}{2}\left[\frac{(1+\mathrm{x})+(1-\mathrm{x})}{\sqrt{1-\mathrm{x}} \sqrt{1+\mathrm{x}}} \cdot \frac{(1+\mathrm{x})}{1}\right]$
$\frac{d y}{d x}=-\frac{1}{2}\left[\frac{2}{\sqrt{1-x} \sqrt{1+x}} \cdot \frac{1+x}{1}\right]=\frac{-1}{(1+x)^{3 / 2}(\sqrt{1-x})}$
Ans. (b)
167. Given $y=\frac{x}{\sqrt{1+x^{2}}}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\sqrt{1+x^{2}}(1)-x \cdot \frac{1}{2 \sqrt{1+x^{2}}}(2 x)}{\left(\sqrt{1+x^{2}}\right)^{2}} \\
& =\frac{\sqrt{1+x^{2}}-\frac{x^{2}}{\sqrt{1+x^{2}}}}{\left(1+x^{2}\right)} \\
& =\frac{\left(1+x^{2}\right)-x^{2}}{\left(1+x^{2}\right)\left(\sqrt{1+x^{2}}\right)} \\
& \frac{d y}{d x}=\frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

ANSWERS

$\therefore \quad x^{3} \frac{d y}{d x}=\frac{x^{3}}{\left(1+x^{2}\right)^{\frac{3}{2}}}=\left[\frac{x}{\sqrt{1+x^{2}}}\right]^{3}$
$x^{3} \frac{d y}{d x}=[y]^{3}$
Ans. (c)
168. Given $\mathrm{x}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}-4}$

Taking \log on both sides
$\log \left(x^{y}\right)=\log \left(e^{x-y}\right)$
$y \log x=(x-y) \log e$
$y \log x=x-y$
$y(1+\log x)=x$
$y=\frac{x}{1+\log x}$
Differentiate on both sides
$\frac{d y}{d x}=\frac{(1+\log x) \cdot 1-x\left(\frac{1}{x}\right)}{(1+\log x)^{2}}$
$=\frac{1+\log -1}{(1+\log x)^{2}}=\frac{\log x}{(1+\log x)^{2}}$
Ans. (a)
169. Given $\mathrm{y}^{3} \mathrm{x}^{5}=(\mathrm{x}+\mathrm{y})^{8} \rightarrow(1)$

Differentiate on both sides.

$$
\begin{aligned}
& y^{3}\left(5 x^{4}\right)+x^{5} \cdot 3 y^{2} \frac{d y}{d x}=8(x+y)^{7}\left[1+\frac{d y}{d x}\right] \\
& 5 y^{3} x^{4}+3 x^{5} y^{2} \frac{d y}{d x}=8(x+y)^{7}+8(x+y)^{7} \frac{d y}{d x} \\
& \frac{d y}{d x}\left[3 x^{5} y^{2}-8(x+y)^{7}\right]=8(x+y)^{7}-5 y^{3} x^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{8(x+y)^{7}-5 y^{3} x^{4}}{3 x^{5} y^{2}-8(x+y)^{7}}=\frac{8(x+y)^{7}-5 \frac{(x+y)^{8}}{x}}{\frac{3}{y}(x+y)^{8}-8(x+y)^{7}} \text { Using equation (1) } \\
& =\frac{(x+y)^{7}\left[8-\frac{5}{x}(x+y)\right]}{(x+y)^{7}\left(\frac{3}{y}(x+y)-8\right)} \\
& =\frac{y[8 x-5(x+y)]}{x[3(x+y)-8 y]}=\frac{y[8 x-5 x-5 y]}{x[3 x+3 y-8 y]} \\
& =\frac{y[3 x-5 y]}{x[3 x-5 y]}=\frac{y}{x}
\end{aligned}
$$

Ans. (a)
170. Given $y=x^{x^{x} \ldots \infty}$
i.e. $y=x^{y}$

Taking \log on both sides
$\log y=\log \left(x^{y}\right)$
$\log y=y \log x$
Differentiate on both sides
$\frac{1}{y} \frac{d y}{d x}=y \cdot \frac{1}{x}+\log x \cdot \frac{d y}{d x}$
$\frac{d y}{d x}\left[\frac{1}{y}-\log x\right]=\frac{y}{x}$
$\frac{d y}{d x}\left[\frac{1-y \log x}{y}\right]=\frac{y}{x}$
$\frac{d y}{d x}=\frac{y^{2}}{x(1-y \log x)}$
$\therefore \quad x . \frac{d y}{d x}=\frac{y^{2}}{1-y \log x}$
Ans. (b)

ANSWERS

171. $\int_{-1}^{1}\left(e^{x}-e^{x}\right) d x=\int_{-1}^{1}(0) d x$
$=0$
Ans. (b) 0
172. $\int_{1}^{\mathrm{e}} \frac{1+\log \mathrm{x}}{\mathrm{x}} \mathrm{dx}$

Let $1+\log \mathrm{x}=\mathrm{t} \quad \mathrm{x}=0, \mathrm{t}=1$
$\frac{1}{x}=\frac{d t}{d x} \quad x=e, t=2$
$=\int_{1}^{2}+\mathrm{dt}=\left[\frac{\mathrm{t}^{2}}{2}\right]_{1}^{2}$
$=2-\frac{1}{2}=\frac{3}{2}$
Ans. (a) $\frac{3}{2}$
173. $\int_{0}^{\log 3} \frac{e x}{1+e^{x}} d x \quad$ If $\quad 1+e^{x}=t \quad x=0, t=2$

$$
e^{x}=\frac{d t}{d x} \quad x=\log 3, t=4
$$

$\int_{2}^{4} \frac{1}{-t} \mathrm{dt}=[\log \mathrm{t}]_{2}^{4} \Rightarrow \log 4-\log 2$
$=\log 2$
Ans. (b) $\log 2$
174. $\int_{0}^{1} \frac{x}{1+\sqrt{1+x^{2}}} \quad \operatorname{let}\left(1+x^{2}\right)=t 2 \quad x=0, t=1$

$$
x=1 t=\sqrt{2}
$$

$2 \mathrm{x}=2 \mathrm{t} \quad \frac{\mathrm{dt}}{\mathrm{dx}} \Rightarrow \mathrm{dx}=\frac{\mathrm{t}}{\mathrm{x}} \mathrm{dx}$
$\int_{1}^{\sqrt{2}} \frac{t d t}{1+t}=\int_{1}^{\sqrt{2}}\left(1-\frac{1}{1+t}\right) d t$

$$
\begin{aligned}
& =[t-\log (1+t)]_{1}^{\sqrt{2}} \\
& =(\sqrt{2}-1)-[\log (1+\sqrt{2})-\log 1] \\
& =(\sqrt{2}-1)-\log (1+\sqrt{2})+0 \\
& =(\sqrt{2}-1)-\log (1+\sqrt{2})
\end{aligned}
$$

Ans. (d) None of these
175. $\int_{0}^{1} \frac{d x}{(1+x)(2+x)} \Rightarrow \int_{0}^{1}\left(\frac{1}{1+x}-\frac{1}{2+x}\right) d x$
$\Rightarrow[\log (1+\mathrm{x})-\log (2+\mathrm{x})]_{0}^{1} \Rightarrow\left[\log \frac{1+\mathrm{x}}{2+\mathrm{x}}\right]_{0}^{1}$
$\Rightarrow \log \frac{2}{3}$
Ans. (a) $\log \frac{2}{3}$
176. $a+a r=15 \Rightarrow a(1+r)=15$
$a=a r+a r^{2}+a r^{3}-\infty$
$\mathrm{a}=\frac{\mathrm{ar}}{1-\mathrm{r}} \Rightarrow 1-\mathrm{r}=\mathrm{r} \Rightarrow \mathrm{r}=1 / 2$
$\therefore a=\frac{15 \times 2}{3}=10$
\therefore Sum of Series $=\frac{a}{1-r}=\frac{10}{1-1 / 2}=20$
Ans. (a) 20
177. $a=\frac{1}{1-x} \Rightarrow \frac{1}{a}=1-x$
$b=\frac{1}{1-y} \Rightarrow \frac{1}{b}=1-y$
$\therefore \frac{1}{a}+\frac{1}{b}=1-x+1-y \Rightarrow 2-(x+y)=2.1=1$
Ans. (c) 1

ANSWERS

178. $90=2000 \times \frac{\mathrm{R}}{100} \times \frac{3}{4}$
$\therefore \mathrm{R}=6 \%$
Ans. (b) 6\%
179. $216=5400 \times \frac{6}{100} \times n$
$\mathrm{n}=4 / 6$ yrs. $=8$ months
Ans. (b) 8 months
180. $I_{1}=10000 \frac{\mathrm{R}}{100} \times 2=200 \mathrm{R}$
$I_{2}=6000 \times \frac{\mathrm{R}}{100} \times 3=1800 \mathrm{R}$
$\mathrm{I}_{1}+\mathrm{I}_{2}=1900 \Rightarrow 200 \mathrm{R}+180 \mathrm{R}=1900$
$\therefore \quad 380 \mathrm{R}=1900 \quad \therefore \mathrm{R}=5 \%$
Ans. (b) 5\%
181.If all the observation are equal.

Then standard deviation $=0$
Ans. (a) 0
182. If every item is increased by 5 then mean (\bar{x}) also increased by 5 , but the value of $\sum(x-\bar{x})^{2}$ remain same.
$\therefore \quad$ Standard deviation will remain same,
Standard deviation $=10$
Ans. (c) -10
183. S.D. $=\sqrt{\frac{\sum \mathrm{d}^{2}}{\mathrm{~N}}}=\sqrt{\frac{360}{10}}=6$

Coefficient of variation $=100 \frac{\mathrm{xSD}}{\mathrm{Am}}$
$=\frac{100 \times 6}{40}=15$
Ans. (a) 15
184. Coefficient of M.D. $=\frac{M . D}{A m} \times 100$
$44=\frac{5.77 \times 100}{\mathrm{AM}}$
A.M. $=13.11$

Ans. (b) 13.11
185. The S.D. of two values is equal to half their difference.
S.D. $=\frac{|a-b|}{2}$

The Statement is correct
Ans. (a) True
186. Computation of Correlation Coefficient

\mathbf{x}	\mathbf{y}	$\mathbf{x y}$	$\mathbf{x}^{\mathbf{2}}$	$\mathbf{y}^{\mathbf{2}}$
50	40	2000	2500	1600
50	40	2000	2500	1600
100	80	4000	5000	3200

$\overline{\mathrm{x}}=\frac{100}{2}=50, \quad \bar{y}=\frac{80}{2}=40$
$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=\frac{4000}{2}-(50)(40)=0$
$\therefore \quad \mathrm{r}=0$
Ans. (c)
187. Given $\mathrm{r}_{\mathrm{R}}=\frac{2}{3}, \quad \sum \mathrm{di}^{2}=55$

$$
\begin{aligned}
\therefore \quad \mathrm{r}_{\mathrm{R}} & =1-\frac{\mathrm{b} \sum \mathrm{di}^{2}}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)} \\
\frac{2}{3} & =1-\frac{6(55)}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)} \\
\frac{2}{3}-1 & =\frac{-330}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)} \\
& -\frac{1}{3}=-\frac{330}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)}
\end{aligned}
$$

ANSWERS

$$
n\left(n^{2}-1\right)=990=10 \quad\left(10^{2}-1\right)
$$

$\therefore \quad \mathrm{n}=10$ as n must a positive
Ans. (a)
188. Let us assume that $4 x+3 y+7=0 \quad \rightarrow(1)$
represent the regression line of x on y and $3 x+4 y+8=0 \quad \rightarrow$ (2) represent the regression line of y on x.
(1) $4 x=-7-3 y$

$$
x=-\frac{7}{4}-\frac{3}{4} y
$$

$$
\therefore \mathrm{bxy}=-\frac{3}{4}
$$

(2) $4 y=-8-3 x$

$$
y=-2-\frac{3}{4} x
$$

$\therefore \quad$ byx $=-\frac{3}{4}$
$\therefore \quad r^{2}=$ byx. bxy $=\left(-\frac{3}{4}\right)\left(-\frac{3}{4}\right)=\frac{9}{16}$
$\therefore \quad r=\sqrt{\frac{9}{16}}= \pm \frac{3}{4}=-\frac{3}{4}=-0.75$
(We take the sign of n as negative since both the regression coefficient are negative).
Ans. (c)
189. Ans. (d) Refer Properties
190. Given byx $=1.2 \rightarrow(1)$
$U=\frac{x-100}{2}$
$\Rightarrow \quad \mathrm{x}=100+2 \mathrm{U}$
$\Rightarrow \quad \bar{x}=100+2 \bar{U}$
and $v=\frac{y-200}{3}$
$\Rightarrow y=200+3 v$
$\Rightarrow \overline{\mathrm{y}}=200+3 \overline{\mathrm{v}}$

$$
\begin{aligned}
& \text { byx }=\frac{\sum(x-\bar{x})(y-\bar{y})}{E(x-\bar{x})^{2}} \\
& =\frac{\sum[2(\mathrm{U}-\overline{\mathrm{U}}) \cdot 3(\mathrm{v}-\overline{\mathrm{v}})]}{\sum\left[2(\mathrm{U}-\overline{\mathrm{U}})^{2}\right.} \\
& =\frac{2 \times 3}{4} \frac{\sum(\mathrm{U}-\overline{\mathrm{U}})(\mathrm{V}-\overline{\mathrm{V}})}{\sum(\mathrm{U}-\overline{\mathrm{U}})^{2}} \\
& =3 / 2 \mathrm{bvu} \\
& \Rightarrow \quad \text { bvu }=2 / 3 \text { byx }=2 / 3 \times 1.2=0.8
\end{aligned}
$$

Ans. (b)
191. Let A, is First bag is selected

A2 is second bag is selected.
B: In a draw of 2 balls, one is red and the other is black.
The required probability
$\mathrm{P}=\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~B}\right)+\mathrm{P}\left(\mathrm{A}_{2} \cap \mathrm{~B}\right)$
$=P\left(A_{1}\right) P\left(B / A_{1}\right)+P\left(A_{2}\right) \cdot P\left(B / A_{2}\right)$
Since there are two bags, the selection of each being equally likely.
$\therefore \quad P\left(A_{1}\right)=P\left(A_{2}\right)=1 / 2$
$\mathrm{P}\left(\mathrm{B} / \mathrm{A}_{1}\right)=$ Probability of drawing one red and one black ball in a draw of 2 balls from the $1^{\text {st }} \mathrm{bag}$
$=\frac{5 \mathrm{C}_{1} \times 3 \mathrm{C}_{1}}{8 \mathrm{C}_{2}}=\frac{15}{28}$
$\mathrm{P}\left(\mathrm{B} / \mathrm{A}_{2}\right)=$ Probability of drawing one red and one black ball in a draw of 2 balls from the $2^{\text {nd }}$ bags.
$=\frac{4 \mathrm{C}_{1} \times 5 \mathrm{C}_{1}}{9 \mathrm{C}_{2}}=\frac{5}{9}$
(1) $\Rightarrow \mathrm{p}=1 / 2 \times \frac{15}{28}+\frac{1}{2} \times \frac{5}{9}$
p. $=\frac{15}{56}+\frac{5}{18}=\frac{135+140}{504}=\frac{275}{504}$

Ans. (a)

ANSWERS

192. Let A 1 is first purse is selected.

A2 is second purse is selected.
Let B: In a draw of one coin, one coin must be silver
The required probabilities.
$\mathrm{P}=\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~B}\right)+\mathrm{P}\left(\mathrm{A}_{2} \cap \mathrm{~B}\right)$
$=P\left(A_{1}\right) \cdot P\left(B / A_{1}\right)+P\left(A_{2}\right) \cdot P\left(B / A_{2}\right) \rightarrow(1)$
Since there are two purse, the selection of each being equally likely
$\therefore \quad \mathrm{P}\left(\mathrm{A}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{A}_{2}\right)=\frac{1}{2}$
$\mathrm{P}\left(\mathrm{B} / \mathrm{A}_{1}\right)=$ Probability of drawing one silver coin from the first purse.
$=\frac{3 \mathrm{C}_{1}}{7 \mathrm{C}_{1}}=3 / 7$
$\mathrm{P}\left(\mathrm{B} / \mathrm{A}_{2}\right)=$ Probability of drawing one silver coin from the second purse.
$=\frac{4 \mathrm{C}_{1}}{7 \mathrm{C}_{1}}=\frac{4}{7}$
Substituting $(1) \Rightarrow \mathrm{p}=1 / 2\left(\frac{3}{7}\right)+\frac{1}{2}\left(\frac{4}{7}\right)$
$=\frac{3}{14}+\frac{4}{14}=\frac{7}{14}=\frac{1}{2}$
Ans. (a)
193. When two tosses of unbiased dice the total sample space.
$\mathrm{S}=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
$n(s)=36$
In the above sample space, let x be the number of sines getting from the experiment.
Let $x=0$, means no sin. $=$ number of times $=25$
$\mathrm{x}=1$, means no $\sin .=$ number of times $=10$

$$
\mathrm{x}=2 \text {, means no sin. }=\text { number of times }=\underline{01}
$$

36

$\therefore \quad$ Expected table is:

x	0	1	2
$\mathrm{p}(\mathrm{x})$	25	10	1

$\therefore \quad$ The required probability $=$ Mean $=$ Expected Value

$$
\begin{aligned}
& =\quad \sum \frac{\mathrm{xp}(\mathrm{x})}{\mathrm{n}(\mathrm{~s})} \\
& =\frac{0 \times 25+1 \times 10+2 \times 1}{36} \\
& =\frac{12}{36}=\frac{1}{3}
\end{aligned}
$$

Ans. (a)
194. The experiment of throwing three dice is theoretically same as that of throwing a die thrice.

Let E be the event of throwing six in a throw of die.
$\therefore \quad P(E)=1 / 6$ and $P(\bar{E})=1-P(E)$
$=1-1 / 6=5 / 6$
Let x denotes the random variable "number of Sixes".
$\therefore \quad$ The possible values of x are $0,1,2,3$
$\therefore \quad \mathrm{P}(\mathrm{x}=2)=\mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2} \overline{\mathrm{E}}_{3}\right.$ or $\mathrm{E}_{1} \overline{\mathrm{E}}_{2} \mathrm{E}_{3}$ or $\left.\overline{\mathrm{E}}_{1} \mathrm{E}_{2} \mathrm{E}_{3}\right)$
$=P\left(E_{1}\right) \cdot P\left(E_{2}\right) P\left(\bar{E}_{3}\right)+P\left(E_{1}\right) P\left(\bar{E}_{2}\right) P\left(E_{3}\right)+P\left(\bar{E}_{1}\right)+P\left(E_{2}\right) P\left(E_{3}\right)$
$=\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{5}{6}+\frac{1}{6} \cdot \frac{5}{6} \cdot \frac{1}{6}+\frac{5}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}$
$P(x=2)=\frac{15}{216}$
Ans. (c)
195. let A and B denote the events that the Chartered Accountant is selected in firms X and Y respectively. Then in the usual notations, we are given.
$\mathrm{P}(\mathrm{A})=0.7$
$\mathrm{P}(\overline{\mathrm{A}})=1-\mathrm{P}(\mathrm{A})=1=0.7=0.3$
$P(\bar{B})=0.5$

ANSWERS

$\therefore \quad P(B)=1-P(B)=1-0.5=0.5$
and $P(\bar{A} \cup \bar{B})=0.6$
By De - Morgan's law
$\overline{(\mathrm{A} \cap \mathrm{B})}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}$
$\therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B})=1-\mathrm{P} \overline{(\mathrm{A} \cap \mathrm{B})}$
$=1-\mathrm{P}(\overline{\mathrm{A}} \cup \overline{\mathrm{B}})$
$=1-0.6$
$=0.4$
The probability that the Chartered Accountant will be selected in one of the two firms X or Y is given by:

```
\(\mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P} \quad(\mathrm{A} \cap \mathrm{B})\)
\(=0.7+0.5-0.4\)
\(=0.8\)
```

Ans. (a)
196. $\int\left[\log (\log x)+\frac{1}{(\log x)^{2}}\right] d x$
$I=\log (\log x) \int d x-\int\left[\frac{d}{d x}[\log (\log x)]\right] \cdot x d x+\int \frac{1}{(\log x)^{2}}=d x$
$=\log (\log x) \cdot x-\int \frac{1}{(\log x)} \cdot d x+\int \frac{1}{(\log x)^{2}} d x$
x. $\log (\log x)-\left[\frac{1}{(\log x)} \int d x+\left(\frac{1}{(\log x)^{2}} \cdot \frac{x}{x} d x\right)\right]+\int \frac{1}{(\log x)^{2}}=d x$
$\Rightarrow x \log (\log x)-\frac{x}{\log x}-\int \frac{1}{(\log x)^{2}}+\int \frac{1}{(\log x)^{2}} d x$
$\Rightarrow \mathrm{x} \cdot \log (\log \mathrm{x})-\frac{\mathrm{x}}{\log \mathrm{x}}+\mathrm{c}$
Ans. (a) $x \cdot \log (\log x)-\frac{x}{\log x}+c$
197. 'is equal to' Satisfies Reflexive, Symnetric and transitive Relation
\therefore This is Equivalence Relation.
Ans. (d) Equivalence Relation.
198. $f(x)=x^{2}+2$
$\therefore \mathrm{f}(-\mathrm{x})=(-\mathrm{x})^{2}+2$
$=\quad x^{2}+2$
$\mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})$
$\therefore \mathrm{f}(\mathrm{x})$ is even function
Ans. (b) even function.
199. $\mathrm{f}(\mathrm{x})=12^{1+\mathrm{x}}=12.12^{\mathrm{x}} \quad 0 \leq \mathrm{x}<9$

Range $=12 \times 12^{\circ}, \quad 12 \times 12^{1} \ldots . .12 \times 12^{9}$
\therefore Range $=12 \leq \mathrm{f}(\mathrm{x})<12^{10}$
Ans. (a) $12 \leq \mathrm{f}(\mathrm{x}) \leq 12^{10}$
200. 'Is greater than' over the set of real number is not satisfied Reflexive and Symmetric relation it only satisfied transitive Relation

Ans. (a) Transitive relation.

Model Test Paper - BOS/CPT - 9

151. Given $\frac{x}{x+y}=\frac{17}{23}$

$$
\Rightarrow 23 x=17 x+17 y
$$

$$
23 x-17 x=17 y
$$

$$
6 x=17 y
$$

$$
x=\frac{17}{6} y
$$

$$
\text { Now, } \frac{x+y}{x-y}=\frac{\frac{17}{6} y+y}{\frac{17}{6} y-y}
$$

$$
=\frac{17 y+6 y}{6} \times \frac{6}{17 y-6 y}
$$

ANSWERS

$=\frac{23 y}{11 y}=\frac{23}{11}$
$\therefore \quad \frac{x+y}{x-y}=\frac{23}{11}$
Ans. (c)
152. Given $\sqrt{1+\frac{25}{144}}=1+\frac{x}{12}$

Squaring on both sides:
$1+\frac{25}{144}=\left(1+\frac{x}{12}\right)^{2}$
$\frac{144+25}{144}=1+\frac{x^{2}}{144}+\frac{2 x}{12}$
$\frac{169}{144}=\frac{144+x^{2}+24 x}{144}$
$\therefore \mathrm{x}^{2}+24 \mathrm{x}-25=0$
$(x+25)(x-1)=0$
$x=-25, x=1$
$\mathrm{x}=1(\therefore$ negative neglected $)$
Ans. (a)
153. Given $(4)^{3} \times(\sqrt{2})^{8}=2^{n}$
i.e. $\left((2)^{2}\right)^{3} \times\left((2)^{\frac{1}{2}}\right)^{8}=2^{n}$
$2^{6} \times 2^{4}=2^{n}$
$2^{10}=2^{n}$
$\therefore \mathrm{n}=10$
Ans. (a)
154. Let total number of men went to a hotel $=x$

Given, A man Spent Rupees $=$ Total number of men
$=\mathrm{x}$
\therefore Given Data $=\mathrm{x}+\mathrm{x}=15625$
$x^{2}=15625$
$x=\sqrt{15625}=125$
Ans. (b)
155. Given $\mathrm{A}+\mathrm{B}+\mathrm{C}=1000 \rightarrow(1)$
$\mathrm{A}+\mathrm{C}=400 \rightarrow(2)$
$\mathrm{B}+\mathrm{C}=700 \rightarrow(3)$
(2) $\Rightarrow \mathrm{A}=400-\mathrm{C}$
(3) $\Rightarrow \mathrm{B}=700-\mathrm{C}$
(1) $\Rightarrow 400-C+700-C+C=1000$
$\mathrm{C}=100$
Ans. (a)
156. Given $\log \left(\frac{a-b}{2}\right)=1 / 2(\log a+\log b)$
$\therefore \quad 2 \log \frac{a-b}{2}=\log a+\log b$
$\log \left(\frac{a-b}{2}\right)^{2}=\log a b$
$\Rightarrow\left(\frac{a-b}{2}\right)^{2}=a b$
$\left(\frac{a-b}{4}\right)^{2}=a b$
$(a-b)^{2}=4 a b$
$a^{2}+b^{2}-2 a b=4 a b$
$a^{2}+b^{2}=6 a b$
Ans. (a)
157. Given $\log _{10} x=4$
$\therefore \mathrm{x}=10^{4}$
Ans. (c) $x=10000$
158. $\log 225=\log (9 \times 25)$
$=\quad \log 9+\log 25$

ANSWERS

$=\quad \log 3^{2}+\log 5^{2}$
$=\quad 2 \log 3+2 \log 5$
$=2 \log 3+2 \log 10 / 2$
$=\quad 2 \log 3+2 \log 10-2 \log 2$
$=2 \times 0.477+2-2(0.301)$
$\log 225=2.352$
Ans. (a)
159. Let $2^{100}=x$

Taking \log on both sides.
$\log 2^{100}=\log \mathrm{x}$
$100 \log 2=\log x$
$\log x=100 \times 0.3010$
$\log x=30.1000$
\therefore the no. of digits in 2^{100} is 31
Ans. (b)
160. Given $\mathrm{nP} 3=\frac{\mathrm{n}!}{(\mathrm{n}-3)!}=60$
$\therefore \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)=60=5 \times 4 \times 3$
$\therefore \quad \mathrm{n}=5$
Ans. (c)
161. $\underset{\mathrm{x} \rightarrow 0}{\operatorname{Lt}} \frac{\mathrm{a}^{\mathrm{x}}+\mathrm{b}^{\mathrm{x}}-2}{\mathrm{x}} \Rightarrow \underset{\mathrm{x} \rightarrow 0}{\operatorname{Lt}} \frac{\left(\mathrm{a}^{\mathrm{x}}-1\right)+\left(\mathrm{b}^{\mathrm{x}}-1\right)}{\mathrm{x}}$
$\Rightarrow \operatorname{Lt}_{x \rightarrow 0} \frac{a^{x}-1}{x}+\operatorname{Lt}_{x \rightarrow 0} \frac{b^{x}-1}{x} \quad\left[\operatorname{Lt}_{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e}^{a}\right]$
App Lt
$=\quad \log a+\log b=\log (a b)$
Ans. (a) $\log (a b)$
162. $\operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{10^{\mathrm{x}}-5^{\mathrm{x}}-2^{\mathrm{x}}+1}{\mathrm{x}}$
$\Rightarrow \operatorname{Lt}_{x \rightarrow 0}\left[\frac{\left(10^{x}-1\right)}{x}-\frac{\left(5^{x}-1\right)}{x}-\frac{\left(2^{x}-1\right)}{x}\right] \quad\left\{\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{a^{x}-1}{x}=\log _{e}^{a}\right\}$

App Lt
$=\quad \log 10-\log 5-\log 2$
$=\log \left(\frac{10}{5 \times 2}\right)=\log 1 \Rightarrow 0$
Ans. (b) 0
163. $\operatorname{Lt}_{x \rightarrow 0} \frac{10^{x}-5^{x}-2^{x}-1}{x^{2}} \Rightarrow \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\left[5^{x} \times 2^{x}-5^{x}-2^{x}-1\right]}{x^{2}}=\frac{5^{x}\left(2^{x}-1\right)-1\left(2^{x}-1\right)}{x^{2}}$
$\operatorname{Lt}_{x \rightarrow 0} \frac{\left(2^{x}-1\right)\left(5^{x}-1\right)}{x^{2}} \Rightarrow \operatorname{Lt}_{x \rightarrow 0} \frac{\left(2^{x}-1\right)}{x} \times \operatorname{Lt}_{x \rightarrow 0} \frac{\left(5^{x}-1\right)}{x}$
$\Rightarrow \quad \log 2 \times \log 5$
Ans. (a) $\log 5 \times \log 2$
164. $\underset{\mathrm{x} \rightarrow 0}{\operatorname{Lt}} \frac{\mathrm{e}^{5 \mathrm{x}}-\mathrm{e}^{3 \mathrm{x}}-\mathrm{e}^{2 \mathrm{x}}+1}{\mathrm{x}}$
$\Rightarrow \operatorname{Lt}_{x \rightarrow 0}\left[5 \frac{\left(\mathrm{e}^{5 \mathrm{x}}-1\right)}{5 \mathrm{x}}-3 \cdot \frac{\left(\mathrm{e}^{3 \mathrm{x}}-1\right)}{3^{\mathrm{x}}}-2 \frac{\left(\mathrm{e}^{2 \mathrm{x}}-1\right)}{2^{\mathrm{x}}}\right]$
App Lt
5.1-3.1-2.1
$=5-3-2=0$

$$
\left\{\operatorname{Lt}_{x \rightarrow 0} \frac{e^{x}-1}{x}=1\right\}
$$

Ans. (b) 0
165. $\operatorname{Lt}_{x \rightarrow 0} \frac{e^{5 x}-e^{3 x}-e^{2 x}-1}{x^{2}}=\operatorname{Lt}_{x \rightarrow 0} \frac{\left(e^{3 x} \cdot e^{2 x}-e^{3 x}-e^{2 x}-1\right)}{x^{2}}$
$\operatorname{Lt}_{x \rightarrow 0} \frac{\left\lfloor\mathrm{e}^{3 x}\left(\mathrm{e}^{2 x}-1\right)-1\left(\mathrm{e}^{2 x}-1\right)\right\rfloor}{\mathrm{x}^{2}} \Rightarrow \underset{\mathrm{x} \rightarrow 0}{\operatorname{Lt}} \frac{\left\lfloor\left(\mathrm{e}^{3 x}-1\right)\left(\mathrm{e}^{2 \mathrm{x}}-1\right)\right\rfloor}{\mathrm{x}^{2}}$
$\operatorname{Lt}_{\mathrm{x} \rightarrow 0}\left(\frac{\mathrm{e}^{3 \mathrm{x}}-1}{\mathrm{x}}\right) \times \underset{\mathrm{x} \rightarrow 0}{\operatorname{Lt}}\left(\frac{\mathrm{e}^{2 \mathrm{x}}-1}{\mathrm{x}}\right)$
App Lt
$3 \times 2=6$
Ans. (a) 6

ANSWERS

166. Given $\int \frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}} d x$

$$
\text { Let } \sqrt{x^{2}+a^{2}}=z-x
$$

$\therefore \quad \mathrm{z}=\mathrm{x}+\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}$
$\frac{d z}{d x}=1+\frac{1}{2 \sqrt{x^{2}+a^{2}}}(2 x) d x$
$=\frac{\sqrt{x^{2}+a^{2}}+x}{\sqrt{x^{2}}+a^{2}}=\frac{z}{\sqrt{x^{2}+a^{2}}}$
$\therefore \quad \frac{\mathrm{dz}}{\mathrm{z}}=\frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}}$
$\therefore \quad \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\int \frac{d z}{z}=\log z+c$
$=\quad \log \left(x+\sqrt{x^{2}+a^{2}}\right)+c$
Ans. (a)
167. $\int \frac{1}{\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}}} d \mathrm{x}$

Let $\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}}=\mathrm{z}-\mathrm{x}$
$\therefore \quad \mathrm{z}=\mathrm{x}+\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}}$
$\frac{d z}{d x}=1+\frac{1}{2 \sqrt{x^{2}-a^{2}}}(2 x)=1+\frac{x}{\sqrt{x^{2}-a^{2}}}$
$=\frac{\sqrt{x^{2}-a^{2}}+x}{\sqrt{x^{2}-a^{2}}}=\frac{z}{\sqrt{x^{2}-a^{2}}}$
$\frac{d z}{z}=\frac{d x}{\sqrt{x^{2}-a^{2}}}$
$\therefore \quad \int \frac{1}{\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}}} d x=\int \frac{1}{2} d z+c$
$=\log (z)=\log \left(x+\sqrt{x^{2}-a^{2}}\right)+c$
Ans. (c)
168. Let $\mathrm{t}=3 \mathrm{x}$
$\therefore \mathrm{dt}=3 \mathrm{dx}$
$\therefore \mathrm{I}=\int \frac{1}{\mathrm{t}^{2}-1} \frac{\mathrm{dt}}{3}=\frac{1}{3} \int \frac{1}{\mathrm{t}^{2}-1^{2}} \mathrm{dt}$
$=\frac{1}{3} \frac{1}{2+1} \log \left(\frac{\mathrm{t}-1}{\mathrm{t}+1}\right)+\mathrm{c}$
$=\frac{1}{6} \log \left(\frac{3 x-1}{3 x+1}\right)+c$
Ans. (b)
169. Let $\mathrm{I}=\int \frac{\mathrm{x}-1}{\sqrt{\mathrm{x}^{2}+1}} d x$
$\therefore I=\int\left[\frac{x}{\sqrt{x^{2}+1}}-\frac{1}{\sqrt{x^{2}+1}}\right] d x$
$=\int \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}} \mathrm{dx}-\int \frac{1}{\sqrt{\mathrm{x}^{2}+1}} \mathrm{dx}$
$\mathrm{I}=\mathrm{I}_{1}-\mathrm{I}_{2}$ (say)
$\mathrm{I}_{1}=\int \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}} \mathrm{dx}$
Let $t=x^{2}+1$
$\therefore \mathrm{dt}=2 \mathrm{xdx}$
$\therefore \mathrm{I}_{1}=\int \frac{1}{\sqrt{\mathrm{t}}} \frac{\mathrm{dt}}{2}$
$=\frac{1}{2} \int \mathrm{t}^{-1 / 2} \mathrm{dt}$
$=\frac{1}{2} \frac{\mathrm{t}^{1 / 2}}{1 / 2}=\sqrt{\mathrm{t}}=\sqrt{\mathrm{x}^{2}+1}$
$\mathbf{I}_{2}=\int \frac{1}{\sqrt{\mathrm{x}^{2}+1}} \mathrm{dx}$
$=\log \left(x+\sqrt{x^{2}+1}\right)$

ANSWERS

$\therefore \quad \mathrm{I}=\mathrm{I}_{1}-\mathrm{I}_{2}$
$I=\sqrt{x^{2}+1}-\log \left(x+\sqrt{x^{2}+1}\right)+c$
Ans. (a)
170. Let $I=\int\left(1-x^{2}\right) \log x d x$
$\therefore \mathrm{I}=\int \log \mathrm{x}\left(1-\mathrm{x}^{2}\right) \mathrm{dx}$
[Here $(\log x)$ is to be take n as first function and $\left(1-x^{2}\right)$ as second function]
Integrating by parts:

$$
\begin{aligned}
I & =\log x\left(x-\frac{x^{3}}{3}\right)-\int \frac{1}{x}\left(x-\frac{x^{3}}{3}\right) d x \\
& =\left(x-\frac{x^{2}}{3}\right) x \log x-\int\left(x-\frac{x^{2}}{3}\right) d x \\
& =\left(1-\frac{x^{2}}{3}\right) x \log x-\int\left(x-\frac{x^{3}}{3 * 3}\right)+c \\
I & =\left(1-\frac{x^{2}}{3}\right) x \log x-\left(x-\frac{x^{3}}{9}\right)+c
\end{aligned}
$$

Ans. (c)
171. Among 4 doctors, 4 officers and 1 doctor who is also an officer committee of 3 can be form in such manner.
(i) 1 doctor, 1 officer, 1 doctor who is also officer $=4_{C_{1}} \times 4_{c_{1}} \times 1=16$
(ii) 2 doctor and doctor - officer $=4_{C_{2}} \times 1=6$
(iii) 2 officer and doctor - officer $={ }^{4} \mathrm{C}_{2} \times 1=6$
(iv) 2 doctor and 1 officer $=4_{C_{2}} \times 4_{C_{1}}=24$
(v) 1 doctor and 2 officer $=4_{\mathrm{C}_{1}} \times 4_{\mathrm{C}_{2}}=24$

Total no. of ways $=16+6+6+24+24=76$
Ans. (a) 76
172. Elector can vote for one or more vacancies in such manner ...
(i) For 3 vacancies $-5_{\mathrm{C}_{3}}=10$
(ii) For 2 vacancies $-5_{\mathrm{C}_{2}}=10$
(iii) For 1 vacancy $-5_{\mathrm{C}_{1}}=5$
\therefore Total ways $=10+10+5=25$
Ans. (c) 25
173. No. of ways in which 12 different thing distributed in 4 groups.
$=\frac{12!}{(3!)^{4}}=15400$
Ans. (a) 15,400
174. Factor of 420 is $=\{2,3,4,5,6,7,10,12,14,15,20,21,30,28,35,42,60$,
$84,105,210,140,420\}$
No. of factor of $420=22$
Ans. (b) 22.
175. Five balls are kept in 3 boxes as no box will empty
$=\left(5_{\mathrm{C}_{1}} \times 4_{\mathrm{c}_{1}} \times 3_{\mathrm{c}_{3}}\right) \times 3$!
$=(5 \times 4 \times 1) \times 6=120$ ways .
Ans. (b) 120 ways.
176. $243+324+432+-\mathrm{n}$ terms
$3^{5} .1+3^{4} .4+3^{3} .4^{2}+-\mathrm{n}$ terms
$\therefore a=3^{5} \quad r=4 / 3$
$\operatorname{Sn}=\frac{3^{5} \cdot\left[\left(\frac{4}{3}\right)^{\mathrm{n}}-1\right]}{\left(\frac{4}{3}-1\right)}=35.3\left[\left(\frac{4}{3}\right)^{\mathrm{n}}-1\right]$
$=3^{6}\left[\frac{4^{n}}{3^{n}}-1\right]$
Ans. (a) $3^{6}\left[\frac{4^{n}}{3^{n}}-1\right]$
177. $\mathrm{S}_{8}=5 . \mathrm{S}_{4} \Rightarrow \frac{\mathrm{a}\left\lfloor\mathrm{r}^{8}-1\right\rfloor}{\mathrm{r}-1}=\frac{5 . \mathrm{a}\left\lfloor\mathrm{r}^{4}-1\right\rfloor}{\mathrm{r}-1}$
$\Rightarrow\left(r^{4}+1\right)=5$

ANSWERS

$r^{4}=4=(\sqrt{2})^{4}$
$\therefore r= \pm \sqrt{2}$
Ans. (c) $\pm \sqrt{2}$
178. $4+44+444 \ldots \mathrm{n}$ terms
$=\frac{4}{9}[9+99+999+\ldots . . n$ terms $]$
$=\frac{4}{9}[(10-1)+(100-1)+(1000-1)+\ldots n$ terms $)$
$=\frac{4}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-\mathrm{n}\right] \Rightarrow \frac{4}{9}\left[\frac{10\left(10^{\mathrm{n}}-1\right)}{9}-\mathrm{n}\right]$
Ans. (a) $\frac{4}{9}\left[\frac{10\left(10^{\mathrm{n}}-1\right)}{9}-\mathrm{n}\right]$
179. $\frac{a+b}{2}=15$ and $\sqrt{a b}=9 \therefore a b=81$
$a=(30-b) \&(30-b) b=01$
$\therefore \mathrm{b}^{2}-30 \mathrm{~b}+81=-0 \quad \therefore \mathrm{~b}=27,3$ and $\mathrm{a}=3,27$
\therefore Nos are 27,3
Ans. (a) 27, 3
180. Product of n Gm between two No. is equal to n th Power of single Gm between two nos.

This statement is correct.
Ans. (a) True
181. The weighted arithmetic mean of first a natural numbers whose weights are equal to the corresponding number is equal to

$$
\frac{2 n+1}{3}
$$

Ans. (a) $\frac{2 n+1}{3}$
182. $\overline{\mathrm{x}}=\frac{\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\mathrm{w}_{3} \mathrm{x}_{3}}{\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right)}$
$110=\frac{100 \times 5=125 \times 5+\mathrm{w}_{3} \times 5}{15}$
$1650=500+625+5 . \mathrm{w}_{3}$
$\mathrm{w}_{3}=\frac{525}{5}=105 \mathrm{~kg}$.
Ans. (b) 105 Kgs .
183. $\sum \mathrm{x}-\mathrm{n} \times 2.5=50$
$\sum \mathrm{x}-2.5 \mathrm{n}=50 \rightarrow$ (i)
$\sum \mathrm{x}-3.5 \mathrm{n}=-50 \rightarrow$ (ii)
[Eg. (i) - Eg. (ii)]
$1.0 \mathrm{n}=100$
$\therefore \mathrm{n}=100 \quad \therefore \Sigma \mathrm{x}=300$
\therefore mean $=\frac{\Sigma \mathrm{x}}{\mathrm{n}}=\frac{300}{100}=3$
Ans. (a) 100, 3
184. The most reliable value is mean.

Ans. (a) Mean
185. In which Central Value arranging is required - Median

Ans. (c) Median
186. There are 365 days in a normal year (without leap year)

No. $365=7 \times 52+1$
$\therefore \quad$ In a year will contain at least 52 Tuesday
The possible remaining one Tuesday
Let A be the event of getting 53 Tuesday in the year.
$\therefore \quad P(A)=1 / 7$
Ans. (b)
187. Given two unbiased dice are thrown, then the simple space are:

$$
\begin{aligned}
\mathrm{S}=\{ & (1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \\
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \\
\therefore \quad & \mathrm{n}(\mathrm{~S})=36
\end{aligned}
$$

Sample space of sum of the faces is not less than 10
$\mathrm{A}=\{(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)\}$
$\mathrm{n}(\mathrm{A})=6$
$\therefore \quad$ Required probability $=\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}=\frac{6}{36}=\frac{1}{6}$
Ans. (a)

ANSWERS

188. Let A be the person travels by a plane
$\therefore \quad \mathrm{P}(\mathrm{A})=\frac{1}{5}$
Let B be the person travels by a train
$\therefore \quad P(B)=\frac{2}{3}$
$\therefore \quad$ Probability of his travelling neither by plane nor by train.
$P(A B)=P(A) . P(B) \quad$ (Since A and B are mutually exclusive conditional probability)
$=\left(\frac{1}{5}\right)\left(\frac{2}{3}\right)=\frac{2}{15}$
Ans. (b)
189. Let A denote the event of drawing a diamond and B denote the event of drawing a King from a pack of Cards. Then we have $P(A)=\frac{13}{52}=\frac{1}{4}$
and $P(B)=\frac{4}{52}=\frac{1}{13}$
$\mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\frac{1}{4}+\frac{1}{13}-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \rightarrow(1)$
There is only one case favourable to the event $\mathrm{A} \bigcap \mathrm{B}$ vize, king of diamond.
Hence, $P(A \bigcap B)=\frac{1}{52}$
$\therefore \quad(1) \Rightarrow \mathrm{P}(\mathrm{AUB})=\frac{1}{4}+\frac{1}{13}-\frac{1}{52}=\frac{13+4-1}{52}=\frac{16}{52}=\frac{4}{13}$
Ans. (c)
190. Let us define the events:
E_{1} : A solves the problem
E_{2} : B solves the problem
then we are given
$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{6}{6+9}=\frac{6}{15}=\frac{2}{5}$
and $P\left(E_{2}\right)=\frac{10}{10+12}=\frac{5}{11}$

Assuming that A and B try to solve the problem independently. E_{1} and E_{2} are independent.
$\therefore \mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2}{5} \times \frac{5}{11}=\frac{2}{11}$
The problem will be solved if at least one of the students A and B solves the problem.
Hence, the probability of the problem being solved is given by
$\mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right)-\mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)$
$=\frac{2}{5}+\frac{5}{11}-\frac{2}{11}$
$=\frac{22+25-10}{55}=\frac{37}{55}=0.673$
Ans. (a)
191. For a Binomial distribution

Mean $(n p)=7 ;$ standard denation $(\sqrt{n p q})=\sqrt{8}$
Variance $=n p q=8$
This statement in false
Because Mean > variance this is the properts
A Binomial distribution
Ans. (b)
192. Given Mean of Binomial distribution $=\mu=n p=3 \rightarrow(1)$
and Variance of Binomial distribution $=\sigma^{2}=n p q=.2 \rightarrow(2)$
$\frac{(2)}{(1)} \Rightarrow \frac{\mathrm{npq}}{\mathrm{np}}=\frac{2}{3}$
$\therefore \mathrm{q}=2 / 3$
$\therefore \mathrm{p}+\mathrm{q}=1$
$\mathrm{p}=1-\mathrm{q}=1-\frac{2}{3}=\frac{1}{3}$
(1) $\Rightarrow \mathrm{n}(1 / 3)=3$
$=\mathrm{n}=9$
$\therefore \mathrm{p}=1 / 3, \mathrm{q}=2 / 3, \mathrm{n}=9$
By the Binomial distribution $p(x)=n C \times p^{x} q^{n-x}$. The probability that the variate takes values less than or equal to 2

ANSWERS

$$
\begin{aligned}
& \text { i.e. } \mathrm{p}(\mathrm{x} \leq 2)=\mathrm{p}(\mathrm{x}=0)+\mathrm{P}(\mathrm{x}=1)+\mathrm{P}(\mathrm{x}=2) . \\
& =\quad 9 \mathrm{C}_{0}(1 / 3)^{0}(2 / 3)^{9-0} \\
& +\quad 9 \mathrm{C}_{1}(1 / 3)^{1}(2 / 3)^{9-1} \\
& +\quad 9 \mathrm{C}_{2}(1 / 3)^{2}(2 / 3)^{9-2} \\
& =\quad 9 \mathrm{C}_{0}(1)(2 / 3)^{9} \\
& +\quad 9 \mathrm{C}_{1}(1 / 3)^{1}(2 / 3)^{8}+9 \mathrm{C}_{2}(1 / 3)^{2}(2 / 3)^{7} \\
& =\quad(2 / 3)^{9}+3(2 / 3)^{8}+4(2 / 3)^{7} \\
& \mathrm{P}(\mathrm{x} \leq 2)=0.3767 \\
& \text { Ans. (a) }
\end{aligned}
$$

193. Exhaustive cases: 2 digits can be selected out of 9 digits 1 through 9 in $9 C_{2}$ ways.
\therefore Exhaustive number of cases $=9 \mathrm{C}_{2}=\frac{9 \times 8}{1 \times 2}=36$
Favoarable number of cases. Among the digits 1 through 9 .
Even digits are: 2, 4, 6 and 8 i.e. 4 in all
Odd digits are 1, 3, 5, 7 and 9 i.e. 5 in all.
The sum of the two digits drawn will be even if
(i) Either both the selected digits are even (or)
(ii) both the selected digits are odd.

Two even digits can be selected out of the 4 even digits in $4 \mathrm{C}_{2}$ ways and two odd digits can be selected out of the 5 odd digits in $5 \mathrm{C}_{2}$ ways.

Hence, the favourable number of cases that the sum of the two selected digits in even.
$=4 \mathrm{C}_{2}+5 \mathrm{C}_{2}$
$=\frac{4 \times 3}{1 \times 2}+\frac{5 \times 4}{1 \times 2}$
$=6+10=16$
$\therefore \mathrm{P}$ (sum of the two selected digits is even)
$=\frac{\text { Number of favourable cases }}{\text { Exhaustive number of cases }}$
$=\frac{16}{36}=\frac{4}{9}$
and $P($ Both selected digits are odd $)=\frac{5 \mathrm{C}_{2}}{9 \mathrm{C}_{2}}=\frac{10}{36}=\frac{5}{18}$
Ans. (c)
194. Let S be the sample space of the experiment
$\therefore S=\{(1,1),(1,2), \ldots(6,5),(6,6)\}$
Let $\mathrm{A}=$ event of getting sum 6
and $B=$ event of getting 4 at least once.
$\therefore A=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$
and $B=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(1,4),(2,4),(3,4),(5,4),(6,4)\}$
$\therefore \mathrm{P}(\mathrm{A})=5 / 36$ and $\mathrm{P}(\mathrm{B})=\frac{11}{36}$
Also, $\mathrm{AB}=\{(4,2),(2,4)\}$
$\therefore \mathrm{P}(\mathrm{AB})=\frac{2}{36}$
\therefore The required probability
$=\quad$ Probability of getting 4 on at least one die given that sum is 6
$=P(B \mid A)=\frac{P(B A)}{P(A)}=\frac{P(A B)}{P(A)}$
$=\frac{2 / 36}{5 / 36}=\frac{2}{5}$
Ans. (b)
195. Ans. (b)
196. Standard Error of mean $=\frac{\sigma}{\sqrt{\mathrm{n}}}$
$=\frac{12.6}{\sqrt{36}}=\frac{12.6}{6}$
Standard Error of mean $=2.1$
Ans. (a) 2.1
197. Standard Error of Mean without replacement
$=\frac{\sigma}{\sqrt{\mathrm{n}}} \sqrt{\frac{\mathrm{N}-\mathrm{n}}{\mathrm{N}-1}}$
$=\frac{12.6}{\sqrt{36}} \sqrt{\frac{101-36}{101-1}}=2.1 \times \sqrt{0.65}$
$\mathrm{SE}=2.1 \times 0.806=1.69$
Ans. (b) 1.69

ANSWERS

198. $\mathrm{P}=\frac{5}{25}=\frac{1}{5}$
$\mathrm{Q}=1-\frac{1}{5}=\frac{4}{5}$
$\mathrm{n}=5$
S.E. of proportion of defectives $=\sqrt{\frac{P Q}{n}}$
$=\sqrt{\frac{1}{5} \times \frac{4}{5} \times \frac{1}{5}}=\sqrt{0.032}$
$\mathrm{SE}=0.1088$
Ans. (b) 0.1088
199. $\mathrm{n}=2, \mathrm{~N}=4$

Total number of possible sample of size of with replacement $=4^{2}=16$
Ans. (a) 16
200. $\mathrm{n}=2, \quad \mathrm{~N}=4$

Total number of possible sample of size without replacement $=\mathrm{N}_{\mathrm{C}_{\mathrm{n}}}=4_{\mathrm{C}_{2}}=6$
Ans. (b) 6

Model Test Paper - BOS/CPT - 10

151. The value of $3^{3}+4^{3}+5^{3}+\ldots . .+11^{3}$

$$
\begin{aligned}
& =\left[\frac{11(11+1)}{2}\right]^{2}-\left[1^{3}+2^{3}\right] \\
& =(11 \times 6)^{2}-(1+8) \\
& =(66)^{2}-(9) \\
& =4356-9=4347
\end{aligned}
$$

Ans. (c)
152. Let the two numbers are x and y

$$
\text { Given } \quad \begin{aligned}
& \mathrm{x}+\mathrm{y}=75 \rightarrow(1) \\
& \\
& \mathrm{x}-\mathrm{y}=20 \rightarrow(2)
\end{aligned}
$$

$(1)+(2) \Rightarrow 2 \mathrm{x}=95$

$$
x=\frac{95}{2}
$$

$\therefore(1) \Rightarrow=75-\frac{95}{2}$

$$
=\frac{55}{2}
$$

$\therefore \quad$ The difference of their squares $=x^{2}-y^{2}$

$$
\begin{aligned}
& =\left(\frac{95}{2}\right)^{2}-\left(\frac{55}{2}\right)^{2} \\
& =\frac{9025}{4}-\frac{3025}{4} \\
& =\frac{6000}{4}=1500
\end{aligned}
$$

Ans. (a)
153. Let the two numbers are x and y

Given $\quad x+y=13 \rightarrow(1)$
and $\quad x^{2}+y^{2}=85 \rightarrow(2)$
(1) $\Rightarrow \quad y=13-x$

Substitute $y=13-x$ in (2)
$x^{2}+(13-x)^{2}=85$
$x^{2}+169+x^{2}-26 x-85=0$
$2 x^{2}-26 x+84=0$
$x^{2}-13 x+42=0$
$(x-7)(x-6)=0$
$x=7, x=6$
When $\mathrm{x}=7$ (1) $\Rightarrow \mathrm{y}=13-7=6$
When $x=6(1) \Rightarrow y=13-6=7$
\therefore The number $(7,6)$
Ans. (a)

ANSWERS

154. Let the two consecutive members are x and $\mathrm{x}-1$

Given $\mathrm{x}^{2}-(\mathrm{x}-1)^{2}=37$

$$
x^{2}-\left(x^{2}+1-2 x\right)=37
$$

$$
x^{2}-x^{2}-1+2 x=37
$$

$$
2 x=38
$$

$$
x=19
$$

$\therefore \mathrm{x}-1=19-1=18$
Ans. (a)
155. Let the number be x.

Given condition (1) $\frac{x}{x+3} \rightarrow(1)$
Given condition (2) $\Rightarrow \frac{x+7}{x+3-2}=2$
$\mathrm{x}+7=2(\mathrm{x}+1)$
$=2 \mathrm{x}+2$
$\mathrm{x}=5$
$\therefore(1) \Rightarrow \frac{5}{5+3}=\frac{5}{8}$
Ans. (b)
156. Given $\log _{x} \sqrt{3}=\frac{1}{6}$

$$
\begin{aligned}
& x^{\frac{1}{6}}=\sqrt{3} \\
& x=(\sqrt{3})^{6} \\
& =(\sqrt{3})^{2}(\sqrt{3})^{2}(\sqrt{3})^{2} \\
& =3 \times 3 \times 3 \\
& x=27
\end{aligned}
$$

Ans. (b)
157. Let $\mathrm{y}=\mathrm{a}^{\log } \mathrm{a}^{\mathrm{x}}$

Taking \log on both sides
$\log y=\log \left[a^{\log _{a} x}\right]$
$=\quad \log _{\mathrm{a}} \mathrm{x} \cdot \log \mathrm{a}$
$\log y=\log x \quad\left[\because \log _{b}^{a} \cdot \log _{c}^{b}=\log _{c}^{a} \quad\right.$ By properties $]$
Taking Exponent on both sides.
$e^{\log y}=e^{\log x}$
$y^{\log e}=x^{\log x}$
$y=x$
Ans. (a)
158. Let $\mathrm{y}=3^{2-\log _{3} 6}$
$=\quad 3^{2} \cdot 3^{-\log _{3} 6}$
$=9.3^{-\left[\log _{3}(3 \times 2)\right]}$
$=9.3^{-\left[\log _{3} 3+\log _{3} 2\right]}$
$=\quad 9.3^{-\left[1+\log _{3} 2\right]}$
$=9.3^{-1} \cdot 3^{-\log _{3} 2}$
$=3.3^{\log _{3}(1 / 2)}$
$=3 .(1 / 2) \quad\left[\because a \log _{\mathrm{a}} \mathrm{x}=\mathrm{x}\right.$ properties $]$
$\therefore \quad y=3 / 2$
Ans. (b)
159. $\log 30=\log (2 \times 3 \times 5)$

$$
\begin{aligned}
& =\quad \log 2+\log 3+\log 5 \\
& =0.3010+0.4771+0.6990 \\
& =1.4771
\end{aligned}
$$

Ans. (c)
160. $\log _{10} 124.5+\log _{10} 379=\log _{10}(12.45 \times 10)$

$$
\begin{array}{ll}
+ & \log _{10}(3.79 \times 100) \\
= & \log _{10} 12.45+\log _{10} 10 \\
+ & \log _{10} 3.79+\log _{10} 100 \\
= & 1.0952+0.5786+2
\end{array}
$$

$\therefore \quad \log _{10} 124.5+\log _{10} 379=4.6738$
Ans. (b)

ANSWERS

161. $\mathrm{n}_{\mathrm{P}_{5}}: \mathrm{n}_{\mathrm{P}_{3}}=2: 1 \Rightarrow \frac{\mathrm{n}!}{(\mathrm{n}-5)!} \div \frac{\mathrm{n}!}{(\mathrm{n}-3)!}=\frac{2}{1}$
$\Rightarrow \quad \frac{(\mathrm{n}-3)!}{(\mathrm{n}-5)!}=\frac{2}{1} \Rightarrow(\mathrm{n}-3)(\mathrm{n}-4)=2.1$
$\therefore \mathrm{n}-3=2 \Rightarrow \mathrm{n}=5$
Ans. (b) 5
162. No. of ways to enter into room $=10$

No. of ways to came out from a different door $=9$
\therefore Total Ways $=10.9=90$ ways
Ans. (a) 90
163. Five digit Nos. by using digit $(1,2,3,4,6)=5!=120$

Four digit nos. by using digit $(1,2,3,4,6)=5 \mathrm{P}_{4}$
$=120$
\therefore Total Nos. greater than $1000=120+120$
$=240$
Ans. (c) 240
164. Total Nos. of 6 digit (greater than 1 lakh)
by using $(1,1,1,2,2,3)$ are $=\frac{6!}{3!2!}$
$=60$
Ans. (a) 60
165. No. of ways in which 17 billiard can be arranged.

If 7 are black, 6 red and 4 white are
$=\frac{17!}{7!6!4!}=4084080$
Ans. (b) 4084080
166. Let $\mathrm{I}=\int \frac{\mathrm{xe}^{\mathrm{x}}}{(\mathrm{x}+1)^{2}} d \mathrm{x}$

$$
=\int \frac{(x+1-1) e^{x}}{(x+1)^{2}} d x
$$

$$
\begin{aligned}
& =\int \frac{(x+1) e^{x}}{(x+1)^{2}} d x-\int \frac{e^{x}}{(x+1)^{2}} d x \\
& =\int \frac{e^{x}}{(x+1)} d x-\int \frac{e^{x}}{(x+1)^{2}} d x \\
& =I_{1}-I_{2} \\
I & =\int \frac{e^{x} d x}{(x-1)}
\end{aligned}
$$

Integrating by parts.

$$
\begin{aligned}
& I_{1}=\frac{1}{1+x} e^{x}-\int\left(-\frac{1}{(x+1)^{2}}\right) e^{x} d x \\
& \therefore I=\frac{1}{(1+x)} e^{x}+\int \frac{1}{(x+1)^{2}} e^{x} d x-\int \frac{e^{x}}{(x+1)^{2}} d x \\
& I=\frac{1}{(1+x)} e^{x}
\end{aligned}
$$

Ans. (b)
167. $\int e^{x} \frac{(x-1)}{(x+1)^{3}} d x=\int \frac{x+1-2}{(x+1)^{3}} e^{x} d x$

$$
\begin{aligned}
& =\quad \int \mathrm{e}^{\mathrm{x}}\left\{\frac{1}{(\mathrm{x}+1)^{2}}-\frac{2}{(\mathrm{x}+1)^{3}}\right\} \mathrm{dx} \\
& =\quad \int \mathrm{e}^{\mathrm{x}}\left\{\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right\} \mathrm{dx}
\end{aligned}
$$

Where $f(x)=\frac{1}{(x+1)^{2}}$
$=\quad e^{x} f(x)+c$
$\int \frac{\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)}{(\mathrm{x}+1)^{3}} \mathrm{dx}=\frac{\mathrm{ex}}{(\mathrm{x}+1)^{2}}+\mathrm{c}$
Ans. (c)
168. See the text book example page No. 9.28

Ans. (a)

ANSWERS

169. $\int \frac{d x}{x^{2}-a^{2}}=\int \frac{d x}{(x-a)(x+a)}$
$\int \frac{1}{2 a}\left(\frac{1}{x-a}-\frac{1}{x+a}\right) d x$
$=\frac{1}{2 a}\left[\int \frac{d x}{x-a}-\int \frac{d x}{x+a}\right]$
$=\frac{1}{2 \mathrm{a}}[\log (x-a)-\log (x+a)]$
$\int \frac{d y}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left[\frac{x-a}{x+a}\right]+c$

Ans. (a)
170. $\int \frac{1}{a^{2}-x^{2}} d x=\int \frac{d x}{(a+x)(a-x)}$
$=\int\left(\frac{-1}{2 a}\right)\left[\frac{1}{a+x}-\frac{1}{a-x}\right] d x$
$=-\frac{1}{2 a}\left[\int \frac{1}{a+x} d x-\int \frac{1}{a-x} d x\right]$
$=\quad-\frac{1}{2 \mathrm{a}}[\log (\mathrm{a}+\mathrm{x})-\log (\mathrm{a}-\mathrm{x})]$
$=\frac{-1}{2 a} \log \left[\frac{a+x}{a-x}\right]+c$
Ans. (b)
171. $e^{x-y}+\log x y+x y=0$
d.wr.t.u.
$e^{x-y}\left(1-\frac{d y}{d x}\right)+\frac{1}{x y}\left[x \frac{d y}{d x}+y .1\right]+\left[x \frac{d y}{d x}+y \cdot 1\right]=0$
$e^{x-y}-e^{x-y} \cdot \frac{d y}{d x}+\frac{1}{y} \frac{d y}{d x}+\frac{1}{x}+x \frac{d y}{d x}+y=0$
$\left(-e^{x-y}+\frac{1}{y}+x\right) \frac{d y}{d x}=-e^{x-y}-\frac{1}{x}-y$
$\frac{1}{y}\left(x y+1-y . e^{x . y}\right) \frac{d y}{d x}=-\frac{1}{x}\left(x . e^{x-y}+1+x y\right)$
$\therefore \frac{d y}{d x}=\frac{-y}{x} \cdot\left(\frac{x . e^{x-y}+1+x y}{1+x y-y \cdot e^{x-y}}\right)$
Ans. (d) None of these
172. $y=x^{\log (\log x)}$
$\log y=\log (\log x) \cdot \log x$
$\frac{1}{y} \cdot \frac{d y}{d x}=\log (\log x) \cdot \frac{1}{x}+(\log x) \cdot \frac{1}{(\log x)} \cdot \frac{1}{x}$
$\therefore \quad \frac{d y}{d x}=\frac{y}{x}[\log (\log x)+1]$
Ans. (a) $\frac{y}{x}[\log (\log x)+1]$
173. $y=x+\frac{1}{x+\frac{1}{x}}$
$y=\frac{x^{3}+x+x}{x^{2}+1}=\frac{x^{3}+2 x}{x^{2}+1}$
$\frac{d y}{d x}=\frac{\left(x^{2}+1\right)\left(3 x^{2}+2\right)-\left(x^{3}+2 x\right)(2 x)}{\left(x^{2}+1\right)^{2}}$
$=\frac{3 x^{4}+3 x^{2}+2 x^{2}+2-2 x^{4}-4 x^{2}}{\left(x^{2}+1\right)^{2}}$
$\frac{d y}{d x}=\frac{x^{4}+x^{2}+2}{\left(x^{2}+1\right)^{2}}$
Ans. (a) $\frac{x^{4}+x^{2}+2}{\left(x^{2}+1\right)^{2}}$
174. $\sqrt{\frac{y}{x}}+\sqrt{\frac{x}{y}}=6$
$\frac{y+x}{\sqrt{x y}}=6 \Rightarrow x+y=6 \sqrt{x y}$
$\therefore 1+\frac{d y}{d x}=\frac{6}{2 \sqrt{x y}}\left(x \frac{d y}{d x}+y .1\right)$
$\left(1-3 \sqrt{\frac{x}{y}}\right) \frac{d y}{d x}=3 \sqrt{\frac{y}{x}}-1$
$\frac{d y}{d x}=\frac{3 \sqrt{\frac{y}{x}}-1}{1-3 \sqrt{\frac{x}{y}}} \Rightarrow \frac{(3 \sqrt{y}-\sqrt{x}) \sqrt{y}}{(\sqrt{y}-3 \sqrt{x}) \sqrt{x}}$
$\frac{d y}{d x}=\frac{3 y-\sqrt{x y}}{\sqrt{x y}-3 x}=\frac{3 y-\left(\frac{x+y}{6}\right)}{\left(\frac{x+y}{6}\right)-3 x}$
$\frac{d y}{d x}=\frac{17 y-x}{y-17 x}=\frac{x-17 y}{17 x-y}$
Ans. (c) $\frac{x-17 y}{17 x-y}$
175. ${ }^{47} \mathrm{C}_{4}+\sum_{\mathrm{i}=0}^{3} 50-\mathrm{i}_{\mathrm{C}_{3}}$
$\Rightarrow \quad 47_{C_{4}}+50_{C_{3}}+49_{\mathrm{C}_{3}}+48_{\mathrm{C}_{3}}+47_{\mathrm{C}_{3}}$
$\Rightarrow 178365+19600+18424+17296+16215$
$\Rightarrow \quad 249900$
Ans. (a) 249900
176. $a=100$
$\mathrm{S}_{6}=5 . \mathrm{S}_{6}$
$\frac{6}{2}[2 a+(6-1) d]=5 \cdot \frac{6}{2}[2(a+6 d)+(6-1) d]$
$3[200+5 d]=15[200+12 d+5 d]$
$200+5 \mathrm{~d}=1000+85 \mathrm{~d}$
$80 \mathrm{~d}=-800 \Rightarrow \mathrm{~d}=-10$
Ans. (a) - 10
177. $S_{n}=3 n^{2}+n$
$\therefore \mathrm{S}_{1}=4$
$\therefore \mathrm{a}_{1}=4$
$\mathrm{S}_{2}=14$
$\mathrm{a}_{2}=14-4=10$
$\therefore d=6$
$\mathrm{S}_{3}=30$
$a_{3}=30-14=16$
$\therefore \mathrm{Tp}=\mathrm{a}+(\mathrm{p}-1) \mathrm{d}$
$=4+(p-1) 6$
$\mathrm{Tp}=(6 \mathrm{p}-2)$
Ans. (b) $(6 \mathrm{p}-2)$
178. $\mathrm{S}_{\mathrm{m}}=\mathrm{S}_{\mathrm{n}}$
$\frac{m}{2}[2 a+(m-1) d]=\frac{n}{2}[2 a+(n-1) d]$
$2 m a-2 n a=\left(n^{2}-n\right) d-\left(m^{2}-m\right) d$
$2 \mathrm{a}(\mathrm{m}-\mathrm{n})=\left(\mathrm{n}^{2}-\mathrm{n}-\mathrm{m}^{2}-\mathrm{m}\right) \mathrm{d}$
$2 \mathrm{a}(\mathrm{m}-\mathrm{n})=-(\mathrm{m}-\mathrm{n})(\mathrm{m}+\mathrm{n}-1) \mathrm{d}$
$\therefore 2 \mathrm{a}=-(\mathrm{m}+\mathrm{n}-1) \mathrm{d}$
$S_{m+n}=\frac{m+n}{2}[2 a+(m+n-1) d]$
$\frac{m+n}{2}[(-m+n-1) d+(m+n-1) d]$
$S_{m+n}=0$
Ans. (a) 0
179. $-\frac{9}{4},-2,-\frac{7}{4} \ldots . .0$
$a=-\frac{9}{4} \quad d=-2+\frac{9}{4}=\frac{1}{4}$
$0=-\frac{9}{4}+(\mathrm{n}-1) \frac{1}{4} \Rightarrow \frac{9}{4}=(\mathrm{n}-1) \frac{1}{4}$
$\Rightarrow 9=\mathrm{n}-1 \Rightarrow \mathrm{n}=10$
Ans. (b) 10th term

ANSWERS

180. $6 . \mathrm{T}_{6}=15 . \mathrm{T}_{15}$
$\therefore 6(a+5 d)=15(a+14 d)$
$2 a+10 d=5 a+70 d$
$3 \mathrm{a}=-60 \mathrm{~d} \quad \therefore \mathrm{a}=-20 \mathrm{~d}$
$\mathrm{T}_{21}=\mathrm{a}+20 \mathrm{~d}$
$=-20 \mathrm{~d}+20 \mathrm{~d}$
$\mathrm{T}_{21}=0$
Ans. (c) 0
181. The average of n numbers is x.

If any no.is multiplied to each of datas. Then average will also multiplied by such no.
$\therefore \quad$ New average $=(\mathrm{n}+1) \mathrm{x}$
Ans. (c) $(\mathrm{n}+1) \mathrm{x}$.
182. $A v=\frac{\sum \mathrm{x}}{\mathrm{n}} \Rightarrow 1.5=\frac{\sum \mathrm{x}}{\delta}$
$=\sum \mathrm{x}=12 \mathrm{~kg}$. (increased weight)
\therefore Weight of New person $=65+12=77 \mathrm{~kg}$.
Ans. (c) 77 Kg .
183. If passes students $=x$
$\therefore 35=\frac{39 \mathrm{x}+15(120-\mathrm{n})}{120}$
$4200=39 \mathrm{x}+1800-15 \mathrm{x}$
$2400=24 x$
$\therefore \mathrm{x}=100$
Passed Students $=100$
Ans. (a) 100
184. $\frac{\sum \mathrm{x}}{17}=45$
$\sum \mathrm{x}=765$
Total of first 9 numbers $=9 \times 51=459$
Total of last 9 numbers $=9 \times 36=324$
\therefore Value of 9 th number $=(459+324)-765$
$=18$
Ans. (c) 18
185. $\sum \mathrm{x}=11 \times 30=330$

Total of first five numbers $=5 \times 25=125$
Total of last five numbers $=5 \times 28=140$
\therefore Value of 6th number $=(125+140) \sim 330=65$
Ans. (b) 65
186. Ans. (a) Refer properties
187. Ans. (b) Refer Properties.
188. Let A be the hearts playing cards in a part. Let B be the club playing cards in a part.
$\therefore \quad \mathrm{P}(\mathrm{A})=\frac{13}{52}$

$$
P(B)=\frac{13}{52}
$$

Here A and B are mutually exclusive.
$\therefore \quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=\frac{13}{52}+\frac{13}{52}=\frac{26}{52}=\frac{1}{2}$
Ans. (a)
189. Total number of balls in the bag $=6+4=10$

Since three balls are drawn out of 10 balls in ${ }^{10} \mathrm{C}_{3}$ ways
$\therefore \quad$ Exhaustive number of Cases $=10 \mathrm{C}_{3}=120$
The number of favourable cases two balls are blue and balls is red
$=6 \mathrm{C}_{2} \times 4 \mathrm{C}_{1}$
$=60$
$\therefore \quad$ Probability of 2 balls are blue and 1 is red $=\frac{6 c_{2} \times 4 c_{1}}{10 c_{3}}$
$=\frac{60}{120}=1 / 2$
Ans. (c)
190. There are 366 days in a leap year.

Now $366=7 \times 52+2$
\therefore The leap year will contain at least 52 Mondays. The possible combination for the remaining two days are:

ANSWERS

(i) Sunday and Monday
(ii) Monday and Tuesday
(iii) Tuesday and Wednesday
(iv) Wednesday and Thursday
(v) Thursday and Friday
(vi) Friday and Saturday
(vii) Saturday and Sunday

Let A be the event of getting 53 Mondays in the leap year. Therefore, only those combinations will be favourable to the event A which contain "Monday"
$\therefore \quad$ The combination (i) and (ii) are favourable to the happening of A
$\therefore \quad \mathrm{P}(\mathrm{A})=2 / 7$
Ans. (a)
191. Given $\mathrm{P}(\mathrm{A})=1 / 3$
$\mathrm{P}(\mathrm{B})=3 / 4$
and A and B are independent events
$P(A \cup B)=1-P(A \cap B)^{1}$
$=1-\left[\mathrm{P}\left(\mathrm{A}^{1}\right) \cdot \mathrm{P}\left(\mathrm{B}^{1}\right)\right]$
$=1-\{[1-P(A)][1-P(B)]\} \quad[A$ and B are independent $]$
$=1-\left[\left(1-\frac{1}{3}\right)\left(1-\frac{3}{4}\right)\right]$
$=1-\left\{\left(\frac{2}{3}\right)\left(\frac{1}{4}\right)\right\}$
P $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=1-\left[\frac{1}{6}\right]=\frac{5}{6}$
Ans. (b)
192. Out of given 4 letters, there are two letters are vowel (O, E). Let A be the first letter is vowel.
$\mathrm{P}(\mathrm{A})=2 / 4$
Let B be the second letter is vowel
$\mathrm{P}(\mathrm{B})=1 / 3$
Here A and B are independent
$\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
$=\frac{2}{4} \cdot \frac{1}{3}=1 / 6$
Ans. (a)
193. Out of given 4 letters, there are two letters are vowel (O, E)

Let A be the first letter is vowel.
i.e. $P(A)=2 / 4$

Let B be the second letters is vowel.
$P(B)=1 / 3$
Here A and B are Mutually executive
$\therefore \quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
$=\frac{2}{4}+\frac{1}{3}=\frac{6+4}{12}=\frac{10}{12}=\frac{5}{6}$
Ans. (a)
194. Let A be the first letter selected M from the 'HOME'.

B be the second letter selected M from the 'HOME'
$\mathrm{P}(\mathrm{A})=1 / 4, \mathrm{P}(\mathrm{B})=1 / 4$
A and B are Mutually exclusive
$\therefore \quad \mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
$=\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$
Ans. (b)
195. By addition thereon

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) \\
& \begin{aligned}
0.65= & {[1-\mathrm{P}(\text { (not } \mathrm{A})]+\mathrm{p} } \\
= & {[1-0.65]+\mathrm{p} } \\
\therefore \mathrm{p} & =0.65-0.35 \\
\mathrm{p} & =0.30
\end{aligned}
\end{aligned}
$$

Ans. (c)
196. Ans. (c)
197. Since $f(x)$ is a Polynomial.
$\& a_{1}, a_{2}, a_{3}$ are in AP
$\therefore \quad \mathrm{f}\left(\mathrm{a}_{1}\right), \mathrm{f}\left(\mathrm{a}_{2}\right), \mathrm{f}\left(\mathrm{a}_{3}\right)$ also in AP

ANSWERS

$\therefore \quad \mathrm{f}^{\prime}\left(\mathrm{a}_{1}\right), \mathrm{f}^{\prime}\left(\mathrm{a}_{2}\right), \mathrm{f}^{\prime}\left(\mathrm{a}_{3}\right)$ also in AP
Ans. (a) AP
198. $A=P\left[\frac{(1+i)^{n}}{i}-1\right]$
$20,000=\mathrm{P} \quad\left[\frac{(1.04)^{10}}{0.04}-1\right]$
After solving we get
$\mathrm{P}=2470$ (Approx)
Ans. (a) 2470
199. $\mathrm{byx}=1.2 \& b x y=-0.5$

This is wrong because bxy and byx have same sign.
Ans. (b) false.
200. The mean of poison distribution is 1.6 and variance is 2 . This is wrong because $\mathrm{P}-\mathrm{d}$ will greater than 2

Ans. (b) false.

