1. Ans. b

Explanation:
$|A|=0$
$6(-12)-x(24)=0$

$$
x=-3
$$

2. Ans. c

Explanation:

$$
\begin{aligned}
\left|A A^{\top}\right| & =|A|\left|A^{\top}\right| \\
& =|A||A| \\
& =5 \times 5=25
\end{aligned}
$$

3. Ans. d

Explanation:
The number of all possible matrices $=2^{9}=512$
4. Ans. b

$$
\begin{aligned}
\text { Exp. SI } & =2,600 \frac{20}{3} \times \frac{1}{100} \times \mathrm{T} \\
& =\frac{520}{3} \times \mathrm{T} \\
\mathrm{~T} & =3 \text { years }
\end{aligned}
$$

5. Ans. d

Explanation:
Coefficient of variation $=\frac{\text { S.D. }}{\bar{x}} \times 100$
$50=\frac{\text { S.D. }}{10} \times 100$
S.D. $=\frac{50 \times 10}{100}=5$
\therefore Variance $=(\text { S.D. })^{2}=5^{2}=25$
6. Ans. b

Explanation:
Coefficient of range $=\frac{\mathrm{L}-\mathrm{S}}{\mathrm{L}+\mathrm{S}}$
Where $\mathrm{L} \rightarrow$ for largest value
$S \rightarrow$ for smallest value
Coefficient of range $=\frac{40-10}{40+10}=\frac{30}{50}=\frac{3}{5}$
7. Ans. a

Explanation:
Arrange the data in ascending order:
$x / 5, x / 3, x / 2, x$
$M=$ Simple Average of two middle terms
$M=\frac{\frac{x}{2}+\frac{x}{3}}{2}=10$
$\frac{x}{2}+\frac{x}{3}=20$
$\frac{5 x}{6}=20$
$x=24$
8. Ans. d

Explanation:
$\sum \mathrm{x}=50 \mathrm{x} 80=4000$
After replacing correct observations $\sum \mathrm{x}=4000-28-69+82+96=4081$
Revised $\overline{\mathrm{x}}=\frac{4081}{50}=81.62$
9. Ans. b

Explanation:

$$
\begin{gathered}
16\left(\frac{a-x}{a+x}\right)^{3}=\frac{a+x}{a-x} \\
\left(\frac{a-x}{a+x}\right)^{4}=\left(\frac{1}{2}\right)^{4} \\
\frac{a-x}{a+x}=\frac{1}{2} \\
\Rightarrow 2 a-2 x=a+x \\
a=3 x \\
\because x=\frac{a}{3}
\end{gathered}
$$

10. Ans. d

Exp. SI for 2 years $=5,680-5,200=480$

$$
\text { SI for } 5 \text { years }=\frac{480}{2} \times 5 \quad=1,200
$$

$$
P=5,200-1,200=\text { Rs. } 4,000
$$

$$
\text { Rate }=\frac{100 \times 1,200}{4,000 \times 5}=6 \%
$$

11. Ans. b

Exp. $x\left(1+\frac{10}{100}\right)^{8}=(8,840-x)\left(1+\frac{10}{100}\right)^{10}$

$$
\begin{array}{ll}
X & =4,840 \\
B & =8,840-4,840=\text { Rs. } 4,000
\end{array}
$$

12. Ans. b

Explanation:
G.M. $=\left(2 \times 2^{2} \times 2^{3} \times 2^{4} \times 2^{5} \times 2^{6}\right)^{1 / 6}$
$=2^{7 / 2}$
13. Ans. d

Explanation:
H.M. $=\frac{n}{1+3+5 \ldots 2 n-1}=\frac{1}{n}$
14. Ans. C
15. Ans. b

Explanation:

$$
\begin{aligned}
\mathrm{CAGR} & =\left(\frac{280}{100}\right)^{\frac{1}{4}}-1 \\
& =29.35 \%
\end{aligned}
$$

16. Ans. b

Explanation:
$C I=60000\left(1+\frac{6}{100}\right)\left(1+\frac{8}{100}\right)\left(1+\frac{10}{100}\right)-60,000=R s .15,556.80$
17. Ans. a

Explanation:
$\mathrm{P}=\frac{\mathrm{R}}{\mathrm{r}}\left[1-(1+\mathrm{r})^{-\mathrm{n}}\right]$
$5,00,000=\frac{\mathrm{R}}{.08}\left[1-(1+0.8)^{-3}\right]$
$R=$ Rs. 1,94,016.75
18. Ans. b

Explanation:

$$
\begin{aligned}
& r_{\mathrm{R}}=1-\frac{6 \sum \mathrm{~d}^{2}}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)} \\
& 0.143=1-\frac{6 \times 48}{7(48)}=0.143
\end{aligned}
$$

19. Ans. b

Explanation:
$F=\sqrt{L \times P}$
$150^{2}=144 \times P$
$P=156.25$
20. Ans. b

Explanation:
Revised salary $=\frac{200}{110} \times 325=590.90$
It means worker is in loss.
21. Ans. C
22. Ans. d

Explanation :
Regression coefficient are independent of change of origin but not scale (As per Fundamental Principle)
23. Ans. c

Explanation:
Let the total Capital be Rs. X
Then $\left(\frac{X}{3} \times \frac{7}{100} \times 1\right)+\left(\frac{X}{4} \times \frac{8}{100} \times 1\right)+\left(\frac{5 X}{12} \times \frac{10}{100} \times 1\right)=561$
$X=6600$
24. Ans. a

Explanation:

$$
\begin{aligned}
A & =\frac{\mathrm{R}}{\mathrm{r}}\left[(1+\mathrm{r})^{\mathrm{n}}-1\right] \\
& =\frac{6000}{0.09}\left[(1+0.09)^{8}-1\right] \\
& =\text { Rs. } 66170.84
\end{aligned}
$$

25. Ans. a

Explanation:
No. of ways that can be formed by using the word 'BANANA' $=\frac{6!}{3!2!}=60$
No. of ways in which two N comes together $=\frac{5!}{3!}=20$
\because Required No. of ways $=60-20=40$
26. Ans. d

Explanation:
An injective function means one-one. In option (d), $f(x)=-x$ for every value of x, we get a different value of f. Hence, it is injective.
27. Ans. c

Explanation :
$b_{y x}=0.5, b_{x y}=B, r=0.1$
$r=\sqrt{b_{x y} \times b_{y x}}$
$0.1=\sqrt{0.5 \times B}$
$0.5 B=0.01$
$B=\frac{0.01}{0.5}=0.02$
28. Ans. b

Explanation: if rank is in reverse order then spearman rank correlation coefficient is -1 .
29. Ans. a
30. Ans. a

Explanation:

$$
\begin{aligned}
& \text { Present value of growing perpetuity }=\frac{R}{i-g} \\
& =\frac{90}{0.07-0.05}=4500
\end{aligned}
$$

31. Ans. C

Explanation:
No of diagonals in a polygon with n sides
$={ }^{\mathrm{n}} \mathrm{C}_{2}-\mathrm{n}=\frac{n(n-3)}{2}$
32. Ans. b

Exp. $=\log _{60} 3+\log _{60} 4+\log _{60} 5$

$$
=\log _{60} 60=1
$$

33. Ans. d

Explanation: Let the sides of a triangle are in $6 x, 4 x$ and $3 x$
Then $6 x+4 x+3 x=52$

$$
x=4
$$

The length of the smallest side $=3 \times 4=12 \mathrm{~cm}$
34. Ans. c

Explanation:

Commodity	R	W	RW
I	110	3	330
II	120	3	360
III	70	1	70
Total		7	760

Weighted Price Index $=\frac{\Sigma R W}{\Sigma W}=\frac{760}{7}=108.5$
35. Ans. c

Explanation : Average age of 10 students $=20 \mathrm{yrs}$
The sum of age of 10 students $=20 \times 10=200 \mathrm{yrs}$
If two boys are increased
The total no of students $=10+2=12$
And average increased by 4 yrs
Then new average $=20+4=24$
The sum of age of 12 student $=24 \times 12=288$
The sum of age of two boys $=288-200=88$
Average age of two boys $=\frac{88}{2}=44$
36. Ans. c

Explanation:
Given: Mode - Mean $=63$

We know the empirical relationship between mean, Median \& Mode i.e.
(Mode - Mean) = 3 (Median - Mean)
Median - Mean $=\frac{63}{3}=21$
37. Ans. a
38. Ans. a

Explanation:
$b_{v u}=\frac{p}{q} \times b_{y x}$
$=\frac{-3}{2} \times-1.2=1.8$
39. Ans. b
40. Ans. a
41. Ans. b
42. Ans. c

Explanation:

$$
\begin{aligned}
f(x) & ={ }^{x} c_{2} \\
& =\frac{x(x-1)}{2} \\
& =\frac{x^{2}-x}{2} \\
& f^{\prime}(x)=\frac{2 x-1}{2} \\
& f^{\prime}(3)=\frac{2 \times 3-1}{2}=\frac{5}{2}
\end{aligned}
$$

43. Ans. C

Explanation:
1Rs. : 50P : $25 P$
$4 x, 5 x, 6 x$
$4 x+\frac{250 x}{100}+\frac{150 x}{100}=120$
$x=15$
The number of coins of 25 paisa $=6 \times 15=90$
44. Ans. b

Explanation:
Required sum

$$
\begin{aligned}
& =(16)^{2}+\frac{1}{2}(16)^{2}+\frac{1}{4}(16)^{2}+\ldots \\
& =(16)^{2}\left[1+\frac{1}{2}+\frac{1}{4}+\ldots\right]
\end{aligned}
$$

$$
=(16)^{2}\left[\frac{1}{1-\frac{1}{2}}\right]=512 \text { sq. } \mathrm{cm}
$$

45. Ans. d

Explanation:
Different words can be formed $=\frac{11!}{4!4!2!}$
$S=4, P=2, I=4$
46. Ans. b

Explanation:
By formula $n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C)$
$92 \%=42 \%+51 \%+68 \%-30 \%-28 \%-36 \%+n(A \cap B \cap C)$
$\mathrm{n}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=25 \%$

The percentage of persons who read only one paper
$=1 \%+18 \%+29 \%=48 \%$
47. Ans. d

Explanation:

$$
\begin{aligned}
\int \frac{d x}{x+\sqrt{x^{2}-1}} & =\int \frac{x-\sqrt{x^{2}-1}}{\left(x+\sqrt{x^{2}-1}\right)\left(x-\sqrt{x^{2}-1}\right)} \\
& =\int\left(x-\sqrt{x^{2}-1}\right) d x \\
& =\frac{x^{2}}{2}-\frac{x}{2} \sqrt{x^{2}-1}+\frac{1}{2} \log \left(x+\sqrt{x^{2}-1}\right)+C
\end{aligned}
$$

48. Ans. C

Explanation : Event A: Person aged 50 years will remain alive after 20 years
Event B: Person aged 60 years will remain alive after 20 years
$\therefore P(A)=\frac{5}{9+5}=\frac{5}{14}$ and $P(B)=\frac{6}{8+6}=\frac{6}{14}$
$\therefore P(A \cup B)=\frac{5}{14}+\frac{6}{14}-\frac{5}{14} \times \frac{6}{14}=\frac{31}{49}$
49. Ans. C
50. Ans. c
51. Ans. C
52. Ans. a

Explanation:
$\frac{2^{n+3}-10 \times 2^{n+1}}{2^{n+1} \times 6}$
$=\frac{2^{n} \times 2^{3}-10 \times 2^{n} \times 2}{2^{n+1} \times 2 \times 6}$
$=\frac{8-20}{12}=\frac{-12}{12}=-1$
53. Ans. d

Explanation:
a, x, c are in A. P. Then,
$2 x=a+c$
$a+c=50$
a, y, c are in G.P. Then,
$y^{2}=a c$
$49=\mathrm{ac}$.
On solving equation (i) and (ii)
$a=1, c=49$
54. Ans. a

Exp. $=\log \frac{n^{2}(n+1)^{2}}{4}$
$=\log n^{2}+\log (n+1)^{2}-\log ^{4}$
$=2 \log n+2 \log (n+1)-2 \log ^{2}$
55. Ans. c

Explanation:

$$
\begin{gathered}
\mathrm{np}-\mathrm{npq}=\frac{5}{9} \\
p=\frac{1}{3}, q=\frac{2}{3}
\end{gathered}
$$

Distribution is $\left(\frac{2}{3}+\frac{1}{3}\right)^{5}$
56. Ans. b

Explanation : The index 1970 on base 1960 will be $=\frac{150 \times 200}{100}=300$
57. Ans. b

Explanation: Less than ogive\& more than Ogive intersect at a point called MEDIAN or we can say second quartile.
58. Ans. a

Explanation:
First Time
$A=3 x$
$P=x$
$\mathrm{n}=6$
$\therefore 3 \mathrm{x}=\mathrm{x}\left[1+\frac{\mathrm{r}}{100}\right]^{6}$
Second Time
$\mathrm{A}=27 \mathrm{x}$
$\mathrm{P}=\mathrm{x}$
$\mathrm{n}=$?
$27 x=x\left[1+\frac{r}{100}\right]^{n}$
$3=\left[1+\frac{\mathrm{r}}{100}\right]^{6}$
(3) ${ }^{3}=\left[1+\frac{\mathrm{r}}{100}\right]^{\mathrm{n}}$

$$
\left\{\left[1+\frac{\mathrm{r}}{100}\right]^{6}\right\}^{3}=\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}}
$$

$$
\left(1+\frac{\mathrm{r}}{100}\right)^{18}=\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}} \Rightarrow \mathrm{n}=18
$$

59. Ans. b
60. Ans. a
61. Ans. b
62. Ans. b

Explanation:
$\mathrm{SI}=\frac{\mathrm{prt}}{100}$
$\frac{3}{8} \mathrm{P}=\frac{\mathrm{pxrx25}}{400}$
$r=6 \%$
63. Ans. d

Explanation:
$A^{\frac{1}{2}} \times A^{\frac{1}{4}} \times A^{\frac{1}{8}}$ \qquad .∞
$=A^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}}+$. \qquad .∞
$S \infty=\frac{a}{1-r}$
$=A^{\frac{\frac{1}{2}}{1-1 / 2}}=A$
64. Ans. a

Explanation:
Largest angle $\quad=\frac{32}{90} \times 360=128^{\circ}$
Smallest angle $\quad=\frac{17}{90} \times 360=68^{\circ}$
Difference $=60^{\circ}$
65. Ans. b

Explanation:
Standard Deviation ${ }^{(\sigma)}=\sqrt{\text { Variance }}$
$=\sqrt{100}=10$
\because Mode $=3$ Median - 2 Mean
$29=(3 \times 23)-2$ Mean
Mean $=(69-29) / 2=20$
\because Coefficient of variation $(C V)=\frac{\sigma}{\overline{\mathrm{X}}} \times 100$

$$
\therefore \mathrm{CV}=\frac{10}{20} \times 100=50 \%
$$

66. Ans. c
67. Ans. b

Explanation:

$$
\mathrm{n}=32, \sigma=5, \Sigma \mathrm{x}=80
$$

$\sigma=\sqrt{\frac{\sum \mathrm{x}^{2}}{\mathrm{n}}}-(\overline{\mathrm{x}})^{2}$
$(5)^{2}=\frac{\Sigma x^{2}}{32}-6.25$
$\Sigma x^{2}=1000$
68. Ans. b
69. Ans. b
70. Ans. c
71. Ans. b
72. Ans. c
73. Ans. b
74. Ans. a

Explanation:
The regression line : $y-\bar{y}=b_{y x} \quad x-\bar{x}$
or $y-8.8=1.24(x-5.5)$
$\Rightarrow y=1.24 x+1.98$
75. Ans. b

Explanation:
The two lines of regression are
$2 x-7 y+6=0$
....(1)
and $7 x-2 y+1=0$
....(2)
If we take (1) as the regression equation of Y on X, then (2) is that of X on Y. We can write these as :
$y=\frac{2}{7} x+\frac{6}{7}$ and $x=\frac{2}{7} y-\frac{1}{7}$
respectively.
$\therefore \mathrm{b}_{\mathrm{yx}}=\frac{2}{7}$ and $\mathrm{b}_{\mathrm{xy}}=\frac{2}{7}$
$\Rightarrow \mathrm{b}_{\mathrm{yx}} \mathrm{b}_{\mathrm{xy}}=\frac{2}{7} \times \frac{2}{7}=\frac{4}{49}<1$
So, our choice is valid.
Now, $r^{2}=b_{y x} b_{x y}=\frac{4}{49} \Rightarrow r=\frac{2}{7}$
(Note that ${ }^{b_{y x}}>0$), so $r>0$
76. Ans. b

Explanation :
$\mathrm{r}_{\mathrm{R}}=1-\frac{6 \sum \mathrm{~d}^{2}}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)}$
$0.8=1-\frac{6 \sum \mathrm{~d}^{2}}{990}$
$\sum \mathrm{d}^{2}=33$
Cor. $\sum \mathrm{d}^{2}=33-(7)^{2}+(9)^{2}=65$
Cor. $\mathrm{r}_{\mathrm{R}}=1-\frac{6 \times 65}{990}$
$=0.61$
77. Ans. a

Explanation:
Laspeyre's Price Index is based on base year Quantity.
Since Formula is $\mathrm{L}=\frac{\sum \mathrm{P}_{1} \mathrm{Q}_{0}}{\sum \mathrm{P}_{0} \mathrm{Q}_{0}} \times 100$
Hence Q_{0} is constant.
78. Ans. c

Explanation:
$A=\{1,2,3\}$
Subsets of $A=$ Power set of A
$\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$
79. Ans. b

Explanation:
$\mathrm{f}(\mathrm{x})=\sqrt{x+\sqrt{x+\ldots \infty}}$
$\mathrm{f}(\mathrm{x})=\sqrt{x+f(x)}$
On squaring both sides, we get
$[f(x)]^{2}=x+f(x)$
differentiation both sides
$2 f(x) f^{\prime}(x)=1+f^{\prime}(x)$
$f^{\prime}(x)[2 f(x)-1]=1$
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 f(x)-1}$
80. Ans. b

Explanation:
3×2 Matrix multiply by 2×3 matrix then order of matrix will be 3×3 matrix.
81. Ans. b

Explanation:
By Option
82. Ans. a

Explanation:

	Machine I	Machine II	
Grade A	2	3	≥ 14
Grade B	1	4	≥ 12

$2 x+3 y \geq 14$
$x+4 y \geq 12$
83. Ans. b

Explanation:
$\mathrm{P}=\frac{\mathrm{R}}{\mathrm{r}}=\frac{30,000}{0.58}=5,17,241.38$
84. Ans. d

Explanation:

$$
\begin{aligned}
\operatorname{fog}(x) & =f[g(x)] \\
& =f[2 x-3] \\
& =(2 x-3)^{2}+3(2 x-3)+1 \\
& =4 x^{2}-6 x+1 \\
\mathrm{fog}(-1) & =4+6+1=11
\end{aligned}
$$

85. Ans. d
86. Ans. b
87. Ans. d
88. Ans. a
89. Ans. c
90.

Ans. a

Explanation:
$a=5,00,000, d=15,000$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{10}{2}[2 \times 5,00,000+(10-1) 15,000]$
$=$ Rs. $56,75,000$
91. Ans. c

Explanation:
$\mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{n}$
$\frac{25}{16} P=P\left(1+\frac{r}{100}\right)^{2}$
$\left(\frac{5}{4}\right)^{2}=\left(1+\frac{r}{100}\right)^{2}$
$\frac{5}{4}=1+\frac{r}{100}$
$r=25 \%$
92. Ans. d

Explanation:
$x^{2}-($ sum of roots $) x+$ product of roots $=0$
$\mathrm{x}^{2}-(2-\sqrt{3}+2+\sqrt{3}) \mathrm{x}+(2-\sqrt{3}) \quad(2+\sqrt{3})=0$
$x^{2}-4 x+1=0$
93. Ans. b
94. Ans. a
95. Ans. c
96. Ans. d

Explanation:
$\mathrm{P}_{01}=\sqrt{\frac{\sum \mathrm{P}_{1} \mathrm{q}_{0}}{\sum \mathrm{P}_{0} \mathrm{q}_{0}} \mathrm{x} \frac{\sum \mathrm{P}_{1} \mathrm{q}_{1}}{\sum \mathrm{P}_{0} \mathrm{q}_{1}}} \mathrm{x} 100=94.88$
97. Ans. d

Explanation: Regression coefficient are independent of change of origin but not scale (As per Fundamental Principle).
98. Ans. c

Explanation : Chain index for any year
$=\frac{\text { Linkrelative(index)of currentyear×Chainindexof the previousyear }}{100}$
99. Ans. d

Explanation:

$$
\text { Using Formula : Real wage }=\frac{\text { Money wage }}{\text { Price Index }} \times 100
$$

$$
\begin{aligned}
& \Rightarrow 1680=\frac{\text { Money Wage }}{\left(\frac{215}{120} \times 100\right)} \times 100 \\
& \therefore \text { Money Wage }=\frac{215}{120} \times 1680=3010 \\
& \therefore \text { Loss of worker }=3010-3000=10 \text { Rs. }
\end{aligned}
$$

100. Ans. b

$$
* * *
$$

