(GI-5+7, GI-6, GI-8, GI-9, SI-2+4, SI-3 \& VI-2)
DATE: 25.08.2019
MAXIMUM MARKS: 100
TIMING: 3¼ Hours

PAPER : COSTING

Answer to questions are to be given only in English except in the case of candidates who have opted for Hindi Medium. If a candidate who has not opted for Hindi Medium.

His/her answer in Hindi will not be valued.
Question No. 1 is compulsory.
Candidates are also required to answer any Four questions from the remaining Five Questions.
In case, any candidate answers extra question(s)/sub-question(s) over and above the required number, then only the requisite number of questions best answered in the answer book shall be valued.
Wherever necessary, suitable assumptions may be made and disclosed by way of note.

Answer 1:

(a)
(i) Break-evensales $\left.=\frac{\text { FixedCost }}{P / V \text { Ratio }}\right\}\{\mathbf{1} \mathbf{M}\}$

P/V Ratio $=\frac{\text { Changein Profit }}{\text { Changein Sales }} \times 100$ or, $\frac{\text { Rs. } 37,50,000}{\text { Rs. } 7,80,60,000-\text { Rs. } 5,93,10,000} \times 100$
Or, $\frac{\text { Rs. } 37,50,000}{\text { Rs. } 1,87,50,000} \times 100$ or, 20%
(ii) Profit/ loss

$$
\begin{aligned}
& =\text { Contribution }- \text { Fixed Cost }\}\{\mathbf{1} \mathbf{~ M}\} \\
& =\text { Rs. } 8,20,00,000 \times 20 \%-\text { Rs. } 98,50,000 \\
& =\text { Rs. } 1,64,00,000-\text { Rs. } 98,50,000=\text { Rs. } 65,50,000\}\{\mathbf{1 ~ M \}}
\end{aligned}
$$

(iii) To earn same amount of profit in 20X8-X9 as was in 20X7-X8, it has to earn the same amount of contribution as in 20X7-X8.
Sales - Variable cost = Contribution equal to 20X7-X8 contribution
Contribution in 20X7-X8 = Sales in 20X7-X8 \times P/V Ratio in 20X7-X8

$$
=\text { Rs. } 5,93,10,000 \times 20 \%=\text { Rs. } 1,18,62,000
$$

Let the number of units to be sold in 20X8-X9 $=\mathrm{X}$
Sales in 20X8-X9 - Variable cost in 20X8-X9 = Desired Contribution
$90 X-80 X=$ Rs. 1,18,62,000
Or, $10 \times=1,18,62,000$
Or, $X=11,86,200$ units
Therefore, Sales amount required to earn a profit equals to 20X7-X8 profit
$=$ Rs. $90 \times 11,86,200$ units $=$ Rs. $10,67,58,000\}\{1 \mathbf{~ M}\}$
Answer:
(b) (i) Optimum run size or Economic Batch Quantity $\left.(E B Q)=\sqrt{\frac{2 \times D \times S}{C}}\right\}\{\mathbf{1} \mathbf{~ M}\}$

Where, $D=$ Annual demand i.e. 1.15\% of 8,00,00,000 = 9,20,000 units S = Set-up cost per run = Rs. 3,500
$\mathrm{C}=$ Inventory holding cost per unit per annum
$=$ Rs. 1.5×12 months $=$ Rs. 18

$$
\mathrm{EBQ}=\sqrt{\frac{2 \times 9,20,000 \text { units } \times \text { Rs. } 3,500}{\text { Rs. } 18}}=18,915 \text { units }
$$

(ii) Calculation of Total Cost of set-up and inventory holding

	Batch size	No. of setups	$\begin{gathered} \text { Set-up } \\ \text { Cost (Rs.) } \end{gathered}$	Inventory holding cost (Rs.)	Total Cost (Rs.)	
B	40,000 units	$\begin{gathered} 23 \\ \left(\frac{9,20,000}{40,000}\right) \end{gathered}$	$\begin{gathered} 80,500 \\ (23 \times \text { Rs. } 3,500) \end{gathered}$	$\left.\begin{array}{c} 3,60,000 \\ \left(\frac{40,000 \times \text { Rs. } 18}{2}\right. \end{array}\right)$	4,40,500	\} $\{1 \mathrm{M}\}$
	18,915 units It can be done in fraction	$\xrightarrow[\left(\frac{9,20,000}{18,915}\right)]{49}$	$\begin{array}{\|l\|} \hline(49 \times \text { Rs. } 3,500) \end{array}$	$\begin{aligned} & \rightarrow 1,70,235 \\ & \left(\frac{18,915 \times \text { Rs. } 18}{2}\right) \end{aligned}$	3,41,735	\} 1 M \}
				Extra Cost (A - B)	98,765	\{1 M \}

Answer:

(c)

Cost Sheet

(for the quarter ending 30 September 2018)
(i) Raw materials consumed

Opening stock of raw materials
Add: Purchase of materials
Less: Closing stock of raw materials
Raw materials consumed
Add: Direct wages ($1,47,000 \times 175 \%$)
Direct Expenses
(ii) Prime cost

Add: Factory overheads (2,57,250/175\%)
Gross Factory cost
Add: Opening work-in-process
Less: Closing work-in-process
(iii) Factory cost

Add: Administration overheads (10\% of factory overheads)
Add: Opening stock of finished goods
Less: Closing stock of finished goods
(iv) Cost of goods sold

Add: Selling \& distribution overheads
Cost of sales
(v) Net Profit

Amount (Rs.)

2,45,600
12,22,650*
$(2,08,000)$
12,60,250
2,57,250
1,80,000
16,97,500
1,47,000
18,44,500
1,70,800
$(1,90,000)$
18,25,300
14,700
3,10,000
$(2,75,000)$
18,75,000
60,000
19,35,000
2,75,000
22,10,000
\{1/4
Each x
20 point $=$

Sales
$*(18,75,000+2,75,000-3,10,000-(1,47,000 \times 10 \%)+1,90,000-1,70,800-$
$(2,57,250 \times 100 / 175 \%)-1,80,000-2,57,250+2,08,000-2,45,600)=12,22,650$

Working Notes:

Purchase of raw materials = Raw material consumed + Closing stock - opening stock of raw material
Raw material consumed = Prime cost - Direct wages - Direct expenses
Factory Overheads $=2,57,250 * 100 / 175$
Prime cost $=$ Factory cost + Closing WIP - Opening WIP - Factory overheads

Factory Cost $=$ Cost of Production goods sold + Closing stock of Finished goods Opening stock of finished goods - Administrative overheads
Net Profit = Sales - Cost of sales
Alternative solution
Cost Sheet
(for the quarter ending 30 September 2018)

	Amount (Rs.)
(i) Raw materials consumed	$2,45,600$
Opening stock of raw materials	$12,37,350 *$
Add: Purchase of materials	$(2,08,000)$
Less: Closing stock of raw materials	$12,74,950$
Raw Material consumed	$2,57,250$
Add: Direct wages (1,47,000×175\%	$1,80,000$
Direct Expenses	$1,47,200$
(ii) Prime cost	$18,59,200$
Add: Factory overheads (2,57,250/175\%)	$1,70,800$
Gross Factory cost	$(1,90,000)$
Add: Opening work-in-process	$18,40,000$
Less: Closing work-in-process	$3,10,000$
(iii) Factory cost/works cost/cost of production	$(2,75,000)$
Add: Opening stock of finished goods	$18,75,000$
Less: Closing stock of finished goods	14,700
(iv) Cost of goods sold	60,000
Add: Administration overheads (10\% of factory overheads)	$19,49,700$
Add: Selling \& distribution overheads	$2,60,300$
Cost of sales	$22,10,000$

* $18,75,000+2,75,000-3,10,000+1,90,000-1,70,800-1,47,500-1,80,000-$ $2,57,250+2,08,000-2,45,600)=12,37,350$.

Working Notes:

Purchase of raw materials = Raw material consumed + Closing stock - opening stock of raw material
Raw material consumed = Prime cost - Direct wages - Direct expenses
Factory Overheads $=257250 * 100 / 175$
Prime cost = Factory cost + Closing WIP - Opening WIP - Factory overheads
Factory Cost $=$ Cost of Production goods sold + Closing stock of Finished goods -
Opening stock of finished goods
Net Profit = Sales - Cost of sales

Answer:

(d) (i)

Raw Material Control A/c

	(Rs.)		(Rs.)
To Balance b/d	2,82,450	By General Ledger Adjustment A/C	27,200
To General Ledger	12,43,810	By Work-in-progress Control A/c	13,60,430
		By Costing P\&L A/c	6,000
		(Loss) (OR GLA) By Balance c/d	1,32,630
	15,26,260		15,26,260

Work-in-Progress Control A/c
(ii)

(Rs.)		(Rs.)	
To Balance b/d	$2,38,300$	By Finished Goods Control	$13,76,200$
To Raw Material Control A/c	$13,60,430$	A/c By Costing P\&L A/c (OR GLA)	12,300
To Wages Control A/c	$2,56,800$	By Balance c/d	$6,03,380$
To Factory OH Control A/c	$1,36,350$		19
	$19,91,880$		$19,91,880$

(iii)

Finished Goods Control A/c

	(Rs.)		(Rs.)
To Balance b/d	$3,92,500$	By Cost of Goods sold A/c (OR GLA)	$14,56,500$
To General Ledger Adjustment A/c	45,900	By Balance c/d	$3,58,100$
To Work-in-process Control A/c	$13,76,200$		$18,14,600$
	$18,14,600$		

(iv) General Ledger Adjustment A/c			
	(Rs.)		(Rs.)
To Costing P\&L A/c (sales) (Balancing figure) " Raw Material Control A/c	25,68,910	By Balance b/d " Raw Material Control A/c " Wages Control A/c " Factory OH Control A/c " Finished Goods Control A/C	9,13,250
	27,200		12,43,810
			2,56,800
			1,36,350
			45,900
	25,96,110		25,96,110

OR
General ledger adjustment account

		(Rs.)			(Rs.)
To	Raw Material Control A/c	27,200	By	Balance b/d	9,13,250
	Raw Material control account(loss)	6,000		Raw Material Control A/c	12,43,810
"	WIP control Account (rejection)	12,300		Wages Control A/c	2,56,800
"	Finished stock Control	14,56,500	"	Factory OH Control A/c	1,36,350
"	Balance c/d	10,94,110	"	Finished Goods Control A/C	45,900
		25,96,110			25,96,110

Working:

Factory Overhead Control A/c

	(Rs.)		(Rs.)
To General Ledger Adjustment A/C	1,36,350	By Work-in-progress A/c	1,36,350
	1,36,350		1,36,350

Answer 2:

(a)

Particulars	Qty. (kgs)	Amount (Rs.)	Particulars	Qty. (kgs)	Amount (Rs.)
To Material A	6,000	3,00,000	By Normal loss	500	8,000
To Material B	4,000	4,00,000	By Process-II A/c	9,200	7,38,857
To Labour	--	21,500	By Abnormal loss A/c	300	24,093
To Overhead	--	49,450			
$\left(\frac{\text { Rs. } 92,000 \times 430 \mathrm{hrs}}{800 \mathrm{hrs}}\right)$					
	10,000	7,70,950		10,000	7,70,950

Process-II A/c

Particulars	$\begin{gathered} \text { Qty. } \\ \text { (kgs) } \end{gathered}$	$\begin{gathered} \text { Amount } \\ \text { (Rs.) } \\ \hline \end{gathered}$	Particulars	$\begin{gathered} \text { Qty. } \\ \text { (kgs) } \end{gathered}$	$\begin{array}{c\|} \hline \text { Amount } \\ \hline \text { (Rs.) } \\ \hline \end{array}$
To Process-I A/c	9,200	7,38,857	By Normal loss	1,000	
To Material C	6,600	8,25,000	By Packing Dept. A/c (See the working notes)	18,000	18,42,496
To Material D	4,200	3,15,000	By WIP A/c (See the working notes)	1,000	1,00,711
To Flavouring essence To Labour	--	$\begin{array}{r} 3,300 \\ 18,500 \end{array}$			
To Overheads	--	42,550			
$\left(\frac{\mathrm{Rs} .92,000 \times 370 \mathrm{hrs}}{800 \mathrm{hrs}}\right)$					
	20,000	19,43,207		20,000	19,43,207

Abnormal loss A/c

Particulars	Qty. (kgs)	Amount (Rs.)	Particulars	Qty. (kgs)	Amount (Rs.)
To Process-I A/c	300	24,093	By Bank Loss A/c	300	--800
			19,293		
	300	24,093		300	24,093

Working Notes:

										\{ 1 M$\}$
				(\%)	Units	(\%)	Units	(\%)	Units	
Mat-C Mat-D	9,200	Transferred to Packing Closing WIP Normal loss	18,000	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 18,000 \\ 1,000 \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	18,000	100	$\begin{array}{r} 18,000 \\ 500 \end{array}$	
	6,600		1,000							
	4,200		1,000		--		--		--	
	20,000		20,000		19,000		19,000		18,500	

Calculation of Unit cost

Cost component	Amount (Rs.)	Equivalent units	Cost per unit (Rs.)
Transferred-in	$7,38,857$	19,000	38.8872
Material-C	$8,25,000$	19,000	43.4211
Material-D	$3,15,000$	19,000	16.5789
Flavouring essence	3,300	19,000	0.1737
Total Material Cost	$18,82,157$	19,000	99.0609
Labour	18,500	18,500	1.0000
Overheads	42,550	18,500	2.3000
Total Cost	$19,43,207$		102.3609

Value of Materials transferred to Packing Department $=18,000$ unit \times Rs. $102.3609=18,42,496$
Value of WIP : For Materials- 1,000 units \times Rs.99.0609 = Rs.99,061
For Labour \& Overheads 500 units \times Rs.3.30
=Rs. 1,650
Rs. 1,00,711

Answer:

(b) Calculation of :

1. Time saved and wages:

Workmen	A	B
Standard time (hrs.)	40	40
Actual time taken (hrs.)	32	30
Time saved (hrs.)	8	10
Wages paid @ Rs. x per hr. (Rs.)	$32 x$	$30 x$

2. Bonus Plan:
$\left.\left.\begin{array}{|l|c|c|}\hline & \text { Halsey } & \text { Rowan } \\ \hline \begin{array}{l}\text { Time saved (hrs.) } \\ \text { Bonus (Rs.) }\end{array} & 8 & 10 \\ & 4 \times \\ & {\left[\frac{8 \text { hrs x Rs. } \mathrm{x}}{2}\right]} & {\left[\frac{10 \mathrm{hrs}}{40 \mathrm{hrs}} \times 30 \mathrm{hrs} \times \text { Rs. } \mathrm{x}\right.}\end{array}\right]\right\}\{\{\mathbf{1} \mathbf{~ M \}}$
3. Total wages:

Workman A: $32 x+4 x=$ Rs. $36 x$ Workman B: $30 x+7.5 x=$ Rs. $37.5 x$ Statement of factory cost of the job

Workmen	A (Rs.)	B (Rs.)		
Material cost (assumed)	y			
Wages (shown above)	$36 x$			
Works overhead	240			
Factory cost (given)	2,600		$\}$	$\mathbf{~ M ~}\}$
:---:				

The above relations can be written as follows: $36 x+y+240=2,600$ (i)
$37.5 x+y+225=2,600$
(ii)

Subtracting (i) from (ii) we get $1.5 x-15=0$
Or, $1.5 x=15$
Or, $\quad x=$ Rs. 10 per hour
On substituting the value of x in (i) we get $y=$ Rs. 2,000
Hence the wage rate per hour is Rs. 10 and the cost of raw material is Rs. $\underbrace{2,000}$ on the job.
\{2 M\}

Answer 3:

(a) Material Price Variance = Actual Quantity (Std. Price - Actual Price)
$X=12,500$ units (Rs. $40-$ Rs. 44) $=50,000$ (A)
$\mathrm{Y}=18,000$ units (Rs. $30-\mathrm{Rs} .28$) $=36,000(\mathrm{~F})$
$Z=88,500$ units (Rs. $10-$ Rs. 12) $=1,77,000(\mathrm{~A})$
1,91,000 (A)
Material Usage Variance = Std. Price (Std. Qty - Actual Qty.)
$X=$ Rs. $40(6,000 \times 2-12,500)=20,000(A)$
$Y=$ Rs. $30(6,000 \times 3-18,000)=$ Nil
$Z=$ Rs. $10(6,000 \times 15-88,500)=15,000(F) 5,000(A)$
Material Mix Variance = Std. Price (Revised Std. Qty. - Actual Qty.)
$X=$ Rs. $40\left(\frac{1,19,000 \times 2}{20}-12,500\right)=24,000(\mathrm{~A})$
$Y=\operatorname{Rs} .30\left(\frac{1,19,000 \times 3}{20}-18,000\right)=4,500(A)$
$Z=$ Rs. $10\left(\frac{1,19,000 \times 15}{20}-88,500\right)=\underline{7,500(\mathrm{~F})}$
$21,000(\mathrm{~A})$
\{2 M \}

$$
=2,500 \text { hours (Rs. } 55-\text { Rs.58) }=7,500(A)
$$

Labour Efficiency Variance $=$ Std. Rate (Std. Hours - Actual Hours)

$$
=\text { Rs. } 55(6,000 \times 3-17,500)=27,500(F)
$$

\{1 M\}

Answer:

(b)

Calculation of "Activity Rate"

Cost Pool	Cost (Rs.) [A]	Cost Driver [B]	$\begin{gathered} \text { Cost Driver } \\ \text { Rate (Rs.) } \\ {[C]=[A] \div[B]} \end{gathered}$	
Machine Department Expenses	18,48,000	Machine Hours (1,32,000 hrs.)	14.00	\} $\{1 / 2 \mathrm{M}\}$
Assembly Department	6,72,000	Assembly Hours (42,000 hrs.)	16.00	3\{1/2 M\}
Expenses				
Setup Cost	90,000	No. of Production Runs (450*)	200.00	\}\{1/2 M\}
Stores Receiving Cost	1,20,000	No. of Requisitions Raised on the Stores (120)	1,000.00	\} $\{1 / 2 \mathrm{M}\}$
Order Processing and Dispatch	1,80,000	No. of Customers Orders Executed $(3,750)$	48.00	\}\{1/2 M\}
Inspection and Quality Control Cost	36,000	No. of Production Runs (450*)	80.00	\}\{1/2 M
Total (Rs.)	29,46,000			

*Number of Production Run is $450(150+120+180)$

Answer 4:

(a) Effective machine hours $=200$ hours $\times 75 \%=150$ hours

Computation of Comprehensive Machine Hour Rate

	Per month (Rs.)	Per hour (Rs.)	
Fixed cost			
Supervision charges	18,000.00		
Electricity and lighting	9,500.00		
Insurance of Plant and building (Rs.18,250 $\div 12$)	1,520.83		
Other General Expenses (Rs.17,500 $\div 12$)	1,458.33		
Depreciation (Rs.64,800 $\div 12$)	$\begin{array}{r} 5,400.00 \\ 35,879.16 \end{array}$	239.19	\{1 M \}
Direct Cost			
Repairs and maintenance	17,500.00	116.67	3\{1 M\}
Power	65,000.00	433.33	3\{1 M\}
Wages of machine man		139.27	\}\{1 M\}
Wages of Helper		109.41	\{1 M
Machine Hour rate (Comprehensive)		1,037.87	

Wages per machine hour

	Machine Man		Helper
Wages for 200 hours			
Machine-man (Rs. 400×25)		Rs.10,000.00	---
Helper (Rs. 275×25)			Rs.6,875.00
Dearness Allowance (DA)		Rs.4,575.00	Rs.4,575.00
	\{3 M \}	Rs.14,575.00	Rs.11,450.00
Production bonus (1/3 of Basic and DA)		4,858.33	3,816.67
Leave wages (10\% of Basic and DA)		1,457.50	1,145.00
		20,890.83	16,411.67
Effective wage rate per machine hour		Rs.139.27	Rs.109.41

Answer:

(b)

Contract Account

** Alternatively Depreciation on machine can be shown debit side of Contract Account.

Working notes:

1. Written down value of Machine:

Depreciation $=\frac{\text { Rs. } 7,85,270-\text { Rs. } 75,000}{9 \text { years }} \times \frac{185 \text { days }}{365 \text { days }}=$ Rs. 40,000

Hence the value of machine after the period of 185 days $=$ Rs. 7,85,270 Rs. $40,000=$ Rs. $7,45,270$
2. The cost of $2 / 3^{\text {rd }}$ of the contract is Rs. $23,57,200$
\therefore Cost of 100% " " " " Rs. $23,57,200 \times 3=$ Rs. $35,35,800 \quad\}\{\mathbf{2} \mathbf{~ M}$
\therefore Cost of 50% of the contract which has been certified by the architect is Rs. $17,67,900$. Also, the cost of $1 / 6^{\text {th }}(2 / 3-1 / 2)$ of the contract, which has been completed but not certified by the architect is Rs. 5,89,300.

Answer 5:

(a) (i) Annual Cost Statement of three vehicles

	(Rs.)
Diesel $\{(1,34,784 \mathrm{~km} . \div 4 \mathrm{~km}) \times$ Rs. 65$\}$ $($ Refer to Working Note 1$)$	$21,90,240$
Oil \& sundries $\{(1,34,784 \mathrm{~km} . \div 100 \mathrm{~km}$.$) \times Rs. 250\}$	$3,36,960$
Maintenance $\{(1,34,784 \mathrm{~km} . \times$ Rs. 0.25$)+$ Rs. 6,000$\}$ $($ Refer to Working Note 2$)$	39,696
Drivers' salary $\{($ Rs.24,000 $\times 12$ months $) \times 3$ trucks $\}$	$8,64,000$
Licence and taxes (Rs. 25,000 $\times 3$ trucks)	75,000
Insurance	45,000
Depreciation $\{($ Rs. 29,00,000 $\div 10$ years $) \times 3$ trucks $\}$	$8,70,000$
General overhead	$1,15,600$
Total annual cost	$45,36,496$

(ii) Cost per km. run

$$
\begin{gathered}
\text { Cost per kilometerrun } \left.=\frac{\text { Total annual cost of vehicles }}{\text { Total kilometretravelledannually }} \text { (Refer to WorkingNote } 1\right) \\
=\frac{\text { Rs. } 45,36,496}{1,34,784 \mathrm{Kms}}=\text { Rs. } 33.66
\end{gathered}
$$

Freightrate per tonnekm. $\left(\frac{\mathrm{Rs.} .7 .48}{0.9}\right) \times 1=$ Rs. 8.31

Working Notes:

1. Total kilometer travelled and Commercial tonnes kilometer (load carried) by three trucks in one year

Truck	One way distance in kms	No. of trips	Total distance covered in km per day (with load)	Total distance covered in km per day (up \& down)	Load carried per trip $/$ day in tonnes	Total effective tonnes km
	a	b	$\mathrm{c}=\mathrm{a} \times \mathrm{b}$	$\mathrm{d}=\mathrm{c} \times 2$	e	$\mathrm{f}=27 / 3 \times \mathrm{c}$
1	16	4	64	128	6	576
2	40	2	80	160	9	720
3	30	3	90	180	12	810
Total			234	468	27	2,106

Total kilometre travelled by three trucks in one year
($468 \mathrm{~km} . \times 24$ days $\times 12$ months) $=1,34,784$
Total effective tonnes kilometre of load carried by three trucks during one year (2,106 tonnes km. $\times 24$ days $\times 12$ months) $=6,06,528$ tonne-km
2. Fixed and variable component of maintenance cost:

$$
\begin{aligned}
& \text { Variable maintenane cost } \mathrm{km} .=\frac{\text { Difference in maintenane cost }}{\text { Difference in distancetravelled }} \\
& =\frac{\text { Rs. } 46,050-\mathrm{Rs} .45,175}{1,60,200 \mathrm{kms}-1,56,700 \mathrm{kms}}=\text { Rs. } 0.25
\end{aligned}
$$

Fixed maintenance cost $=$ Total maintenance cost-Variable maintenance cost
$=$ Rs. $46,050-1,60,200 \mathrm{kms} \times$ Rs. $0.25=$ Rs. 6,000

Answer:

(b) (a) Flexible Budget before marketing efforts:

	$\begin{gathered} \text { Product A (Rs.) } \\ 6,000 \text { units } \\ \hline \end{gathered}$		Product B (Rs.) 9,000 units	
	Per unit	Total	Per unit	Total
Sales	120.00	7,20,000	78.00	7,02,000
Raw material cost	60.00	3,60,000	42.00	3,78,000
Direct labour cost per unit	30.00	1,80,000	18.00	1,62,000
Variable overhead per unit	12.00	72,000	6.00	54,000
Fixed overhead per unit	8.00	48,000	4.00	36,000
Total cost	110.00	6,60,000	70.00	6,30,000
Profit	10.00	60,000	8.00	72,000

(b) Flexible Budget after marketing efforts:

	Product A (Rs.) $\mathbf{7 , 5 0 0}$ units		Product B (Rs.) $\mathbf{9 , 5 0 0}$ units	
	Per unit	Total	Per unit	Total
	120.00	$9,00,000$	78.00	$7,41,000$
Raw material cost	60.00	$4,50,000$	42.00	$3,99,000$
Direct labour cost per unit	30.00	$2,25,000$	18.00	$1,71,000$
Variable overhead per unit	13.20	99,000	6.60	62,700
Fixed overhead per unit	6.72	50,400	3.98	37,800
Total cost	109.92	$8,24,400$	70.58	$6,70,500$
Profit	10.08	75,600	7.42	70,500

Answer 6:

(a) Controllable costs and Uncontrollable costs: Cost that can be controlled, typically by a cost, profit or investment centre manager is called controllable cost. Controllable costs incurred in a particular responsibility centre can be influenced by the action of the executive heading that responsibility centre.
Costs which cannot be influenced by the action of a specified member of an undertaking are known as uncontrollable costs.

Answer:

(b) Cost plus contract: Under cost plus contract, the contract price is ascertained by adding a percentage of profit to the total cost of the work. Such types of contracts are entered into when it is not possible to estimate the contract cost with reasonable accuracy due to unstable condition of material, labour services etc.
Following are the advantages of cost plus contract:
(i) The contractor is assured of a fixed percentage of profit. There is no risk of incurring any loss on the contract.
(ii) It is useful specially when the work to be don is not definitely fixed at the time of making the estimate.
(iii) Contractee can ensure himself about the 'cost of contract' as he is empowered to examine the books and documents of the contractor to ascertain the veracity of the cost of contract.

Answer:

(c) In integrated accounting system cost and financial accounts are kept in the same set of books. Such a system will have to afford full information required for Costing as well as for Financial Accounts. In other words, information and data should be recorded in such a way so as to enable the firm to ascertain the cost (together with the necessary analysis) of each product, job, process, operation or any other identifiable activity. It also ensures the ascertainment of marginal cost, variances, abnormal losses and gains. In fact all information that management requires from a system of Costing for doing its work properly is made available. The integrated accounts give full information in such a manner so that the profit and loss account and the balance sheet can be prepared according to the requirements of law and the management maintains full control over the liabilities and assets of its business.
Since, only one set of books are kept for both cost accounting and financial accounting purpose so there is no necessity of reconciliation of cost and financial accounts.

Answer:

(d) The impact of IT in cost accounting may include the followings:
(i) After the introduction of ERPs, different functional activities get integrated and as a consequence a single entry into the accounting system provides custom made reports for every purpose and saves an organisation from preparing different sets of documents. Reconciliation process of results of both cost and financial accounting systems become simpler and less sophisticated.
(ii) A move towards paperless environment can be seen where documents like Bill of Material, Material Requisition Note, Goods Received Note, labour utilisation report etc. are no longer required to be prepared in multiple copies, the related department can get e-copy from the system.
(iii) Information Technology with the help of internet (including intranet and extranet) helps in resource procurement and mobilisation. For example, production department can get materials from the stores without issuing material requisition note physically. Similarly, purchase orders can be initiated to the suppliers with the help of extranet. This enables an entity to shift towards Just-in-Time (JIT) approach of inventory management and production.
(iv) Cost information for a cost centre or cost object is ascertained with accuracy in timely manner. Each cost centre and cost object is codified and all related costs are assigned to the cost object or cost centre. This process automates the cost accumulation and ascertainment process. The cost information can be customised as per the requirement. For example, when an entity manufacture or provide services, it can know information job-wise, batch-wise, process-wise, cost centre wise etc.
(v) Uniformity in preparation of report, budgets and standards can be achieved with the help of IT. ERP software plays an important role in bringing uniformity irrespective of location, currency, language and regulations.
(vi) Cost and revenue variance reports are generated in real time basis which enables the management to take control measures immediately.
(vii) IT enables an entity to monitor and analyse each process of manufacturing or service activity closely to eliminate non value added activities.
The above are examples of few areas where Cost Accounting is done with the help of IT.
