# (GI-1, GI-2, GI-3, GI-4, VI-1 \& SI-1) 

DATE: 25.09.2019
MAXIMUM MARKS: 100
TIMING: 3¼ Hours

## PAPER : COSTING

Answer to questions are to be given only in English except in the case of candidates who have opted for Hindi Medium. If a candidate who has not opted for Hindi Medium. His/her answer in Hindi will not be valued.

Question No. 1 is compulsory.
Candidates are also required to answer any Four questions from the remaining Five Questions.
In case, any candidate answers extra question(s)/sub-question(s) over and above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.
Wherever necessary, suitable assumptions may be made and disclosed by way of note.
Answer: 1
(a) (i)
Annual usage of Components(A) $=1500 \times 12=18,000$ Units
Ordering Cost(O)
$=$ Rs. 75 per order
Carrying cost per unit per annum (C) i.e. Storage cost + Obsolescence cost = $2 \%+1 \%=3 \%$
$\left.\begin{array}{l}\text { Calculation of Economic Order Quantity } \\ E O Q=\sqrt{\frac{2 A O}{C}}=\sqrt{\frac{2 \times 18,000 \text { units } \times \text { Rs. } 75}{R s .1000 \times 3 \% 0}}=300 \text { units }\end{array}\right\}\{\mathbf{1} \mathbf{~ M}\}$
(ii) Re- Order level: = (Maximum usage $\times$ Maximum lead time) $=400$ units $\times 8$ weeks $=3,200$ units
Evaluation of Profitability of different options of order quantity

When EOQ is ordered

|  |  | Rs. |
| :--- | :--- | ---: |
| Purchase Cost | $(18,000 \times 1,000)$ | $1,80,00,000$ |
| Ordering Cost $\left(\frac{\mathrm{A}}{\mathrm{Q}} \times \mathrm{O}\right)$ | $\left(\frac{18,000 \times 75}{300}\right)$ | 4,500 |
| Carrying Cost $\left(\frac{\mathrm{Q}}{2} \times \mathrm{C} \times \mathrm{i}\right)$ | $\left(\frac{300}{2} \times 30\right)$ | 4,500 |
| Total Cost | $1,80,09,000$ |  |

When Quantity Discount is accepted
$\left.\begin{array}{|ll|r|}\hline & & \text { Rs. } \\ \hline \text { Purchase Cost } & {[18,000-(1,000-5 \%)]} & 1,71,00,000 \\ \text { Ordering Cost }\left(\frac{\mathrm{A}}{\mathrm{Q}} \times \mathrm{O}\right) & \left(\frac{18,000}{6,000} \times 75\right) & \\ \text { Carrying Cost }\left(\frac{\mathrm{Q}}{2} \times \mathrm{C} \times \mathrm{i}\right) & \left(\frac{6,000}{2} \times 950 \times 3 \%\right) & 88,500 \\ \hline \text { Total Cost } & \\ \hline\end{array}\right\}\left\{\begin{array}{l}\mathbf{1 / 2} \mathbf{M}\} \\ \hline\end{array}\right.$

So, Savings in cost = Rs. 8,23,275 (Rs. 1,80,09,000 - Rs. 1,71,85,725) Advice - The total cost of inventory is higher if EOQ is adopted. If we accept quantity discount of $5 \%$ offered by the supplier, 'ASJ' will save Rs. $8,23,275 /-$. Hence, the company is advised to accept the quantity discount.

## Answer:

(b) (i) Amount of under/ over absorption of production overheads during the period of first six months of the year 2017-2018:

|  | Amount (Rs.) | Amount (Rs.) |
| :---: | :---: | :---: |
| Total production overheads actually incurred during the period |  | 24,88,200 |
| Less: Amount paid to worker as per court order | 1,28,000 |  |
| Expenses of previous year booked in the current year | 1,200 |  |
| Wages paid for the strike period under an award | 44,000 |  |
| Obsolete stores written off | 6,700 | $\begin{gathered} (1,79,900) \\ 23,08,300 \end{gathered}$ |
| Less: Production overheads absorbed as per machine hour rate ( $1,16,000$ hours $\times$ Rs.20*) <br> Amount of over absorbed production overheads |  | $\begin{array}{r} 23,20,000 \\ 11,700 \end{array}$ |
| *Budgeted Machine hour rate (Blanket ra $=\frac{\text { Rs. } 44,00,000}{2,20,000 \text { hours }}=\text { Rs. } 20 \text { per hour }$ |  |  |

(ii) Accounting treatment of over absorbed production overheads: As, one fourth of the over absorbed overheads were due to defective production policies, this being abnormal, hence should be transferred to Costing Profit and Loss Account.
Amount to be transferred to Costing Profit and Loss Account $=(11,700 \times$ $1 / 4$ ) = Rs. 2,925
Balance of over absorbed production overheads should be distributed over Works in progress, finished goods and Cost of sales by applying supplementary rate*.
Amount to be distributed $=(11,700 \times 3 / 4)=$ Rs. 8,775$\}\{\mathbf{1} \mathbf{~ M}\}$
Supplementary rate $=\frac{\text { Rs. } 8,775}{33,000 \text { units }}=$ Rs. 0.2659 per unit
(iii) Apportionment of under absorbed production overheads over WIP, Finished goods and Cost of sales:

|  | Equivalent completed units | Amount (Rs.) |
| :--- | ---: | ---: |
| Work-in-Progress (18,000 <br> units $\times 50 \% \times$ Rs. 0.2659) | 9,000 | 2,393 |
| Finished goods (2,400 units <br> $\times$ Rs. 0.2659) | 2,400 | 638 |
| Cost of sales (21,600 units <br> $\times$ Rs. 0.2659) | 21,600 | 5,744 |
| Total | 33,000 | 8,775 |

## Answer:

| (c) | Dr. Memorandum Reconciliation Accounts |  |  | Cr. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (Rs.) |  | (Rs.) |  |
|  | To Net Loss as per Costing books | 3,47,000 | By Administration overheads over recovered in cost accounts | 60,000 | $2 \mathrm{M}\}$ |
| \{1/2 M \} | To Factory overheads under absorbed in Cost Accounts | 40,000 | By Interest on investment not included in Cost Accounts | 96,000 | 2 M |
| /2 M\} | To Depreciation under charged in Cost Accounts | 50,000 | By Transfer fees in Financial books | 24,000 | 1/2 M |
| /2 M $3\{$ | To Income-Tax not provided in Cost Accounts | 54,000 | By Stores adjustment(Credit in financial books) | 14,000 | 2 M |
| \{1/2 M \} | To Interest on Loan Funds in Financial Accounts | 2,45,000 | By Dividend received in financial books By Net loss as per Financial books | 32,000 | $\{1 / 2 \mathrm{M}\}$ $\{1 / 2 \mathrm{M}\}$ |
|  |  | 7,36,000 |  | 7,36,000 |  |

## Answer:

(d) Statement of Equivalent Production Units (Under FIFO Method)

| Particulars | Input units | Particulars | Output units | Equivalent Production |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (\%) | Equivalent units |
| Opening W-I-P | 3,000 | From opening W-I-P | 3,000 | 30 | 900 |
| Units introduced | 17,000 | From fresh inputs | 12,000 | 100 | 12,000 |
|  |  | Units completed (Transferred to next process) | 15,000 |  |  |
|  |  | Normal Loss $\{12 \%(3,000+17,000 \text { units })\}$ | 2,400 | -- | -- |
|  |  | Closing W-I-P | 2,200 | 80 | 1760 |
|  |  | Abnormal loss (Balancing figure) | 400 | 100 | 400 |
|  | 20,000 |  | 20,000 |  | 15,060 |

Computation of cost per equivalent production unit :
$\left.\begin{array}{|l|r|}\hline \text { Cost of the Process (for the period) } & \text { Rs. } 33,12,720 \\ \hline \text { Less: Scrap value of normal loss (Rs. } 50 \times 2,400 \text { units) } & \text { (Rs. } 1,20,000 \text { ) } \\ \hline \text { Total process cost } & \text { Rs. } 31,92,720 \\ \hline \text { Eq. Production units } & \text { Rs. } 15,060 \\ \hline \text { Cost/Eq. Production units } & \text { Rs. } 212 \\ \hline\end{array}\right\}\{\mathbf{1} \mathbf{~ M}\}$

## Answer: 2

(a) Statement Showing "Budgeted Cost per unit of the Product"

| Activity | Activity Cost (Budgeted) (Rs.) | Activity Driver | No. of Units of Activity Driver (Budget) | Activity Rate (Rs.) | Deposits | Loans | Credit Cards |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ATM | 8,00,000 | No. of ATM | 2,00,000 | 4.00 | 6,00,000 | --- | 2,00,000 |
| Services |  | Transaction |  |  |  |  |  |
| Computer Processing | 10,00,000 | No. of Computer | 20,00,000 | 0.50 | 7,50,000 | 1,00,000 | 1,50,000 |
| Processing |  | Transaction |  |  |  |  |  |
| Issuing | 20,00,000 | No. of | 5,00,000 | 4.00 | 14,00,000 | 2,00,000 | 4,00,000 |

\{8 M\}

| Statements Customer Inquiries | 3,60,000 | Statements <br> Telephone Minutes | 7,20,000 | 0.50 | 1,80,000 | 90,000 | 90,000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Budgeted Cost | 41,60,000 |  |  |  | 29,30,000 | 3,90,000 | 8,40,000 |
| Units of Product (as estimated in the budget period) |  |  |  |  | 58,600 | 13,000 | 14,000 |
| Budgeted Cost per unit of the product |  |  |  |  | 50 | 30 | 60 |

## Working Note :

| Activity | Budgeted Cost (Rs.) | Remark |
| :---: | :---: | :---: |
| ATM Services: |  |  |
| (a) Machine | 4,00,000 | - All fixed, no change. |
| Maintenance |  | - Fully fixed, no change. |
| (b) Rents | 2,00,000 |  |
| (c) Currency | 2,00,000 | - Doubled during budget period. |
| Replenishment Cost <br> Total $\{\mathbf{1 / 2} \mathbf{M}\}\{$ | 8,00,000 |  |
| Computer Processing | 2,50,000 | - Rs. 2,50,000 (half of Rs. $5,00,000$ ) is fixed and no change is expected. |
|  | 7,50,000 | - Rs. 2,50,000 (variable portion) is expected to increase to three times the current level. |
| Total $\quad \mathbf{1 / 2} \mathbf{M}\}$ \{ | 10,00,000 |  |
| Issuing Statements | 18,00,000 | - Existing. |
|  | 2,00,000 | - 2 lakh statements are expected to be |
|  |  | increased in budgeted period. For every increase of one lakh statement, one lakh |
| Total $\quad\{\mathbf{1 / 2} \mathbf{M}\}\{$ | 20,00,000 | rupees is the budgeted increase. |
| Computer Inquiries |  | - Estimated to increase by 80\% during the |
| Total $\mathbf{\{ 1 / 2 ~ M \} \{ ~}$ | 3,60,000 | budget period. (Rs. 2,00,000 $\times 180 \%$ ) |

## Answer:

## (b) (i) Contract Account

| To Material purchased | (Rs.'000) | (Rs.'000) | Py Material returned | (Rs.'000)(Rs.'000) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 3,450 \\ (50) \end{array}$ | 6,800 |  | 11,800 | 150 |
| " Direct wages |  |  | " Work-in-progress: |  |  |
| Less: Prepaid wages |  | 3,400 | Value of work certified (Rs.9,440 $\div$ 0.8) |  |  |
|  |  |  |  |  |  |
| " Salaries | 200 |  | Cost of work | 500 |  |
|  |  |  | uncertified |  |  |
| Add: Outstanding | 100 |  |  |  | 12,300 |
|  |  | 300 | " Material stolen at |  | 50 |
| " Depreciation on Plant |  | 75 | " Material at site |  | 175 |
| \{(Rs.1,200× 15\%) |  |  |  |  |  |
| $\times(5 \div 12)\}$ |  |  |  |  |  |
| " Costing P\&L A/c |  | 2,100 |  |  |  |
| (Notional profit) (bal. |  |  |  |  |  |
|  |  | 12,675 |  |  | 12,675 |

(ii) Balance Sheet (extract) as on 31st March, 2018

| Liabilities |  | (Rs.'000) | Assets |  | (Rs.'000) |
| :--- | ---: | ---: | :--- | ---: | ---: |
| Capital | 100 | Plant at site |  | 1,125 |  |
| Add: Notional Profit |  |  | Work in Progress |  |  |
| Outstanding Salary |  |  | Work certified | 11,800 |  |
|  |  |  | Work uncertified | 500 |  |
|  |  |  | Cash \& Bank (in transit) | 9,400 | 2,860 |
|  |  |  | Prepaid Direct wages |  | 50 |
|  |  |  | Material at site |  | 175 |

Answer: 3 (a)
(i) Statement showing the apportionment of joint costs to $A, B$ and $X$

| Products | A | B | X | Total |
| :---: | :---: | :---: | :---: | :---: |
| Output (kg) | 18,000 | 10,000 | 54,000 |  |
| Sales value at the point of split off (Rs.) | $\begin{array}{r} 9,00,000 \\ \text { (Rs. } 50 \times 18,000 \text { ) } \end{array}$ | $\begin{array}{r} 4,00,000 \\ \text { (Rs. } 40 \times 10,000 \text { ) } \end{array}$ | $\begin{array}{r} 5,40,000 \\ \text { (Rs. } 10 \times 54,000 \text { ) } \end{array}$ | 18,40,000 |
| Joint cost apportionm ent on the basis of sales value at the point of split off (Rs.) | $\begin{gathered} 6,30,000 \\ \left(\frac{\text { Rs. } 12,88,000}{\text { Rs. } 18,40,000} \text { x Rs. } 9,00,000\right) \end{gathered}$ | $\left(\begin{array}{r}2,80,000 \\ \text { Rs. } 12,88,000 \\ \text { Rs. } 18,40,000\end{array}\right.$ R Rs. $\left.4,00,000\right)$ | $\left(\begin{array}{r}3,78,000 \\ \text { Rs. } 12,88,000 \\ \text { Rs. } 18,40,000\end{array}\right.$ | 12,88,000 |

(ii) Statement showing the cost per kg. of each product (indicating joint cost; further processing cost and total cost separately)

| Products | A | B | X |
| :--- | ---: | ---: | ---: |
| Joint costs apportioned (Rs.) : (I) | $6,30,000$ | $2,80,000$ | $3,78,000$ |
| Production (kg) : (II) | 18,000 | 10,000 | 54,000 |
| Joint cost per kg (Rs.): (I $\div \mathrm{II})$ | 35 | 28 | 7 |
| Further processing Cost per kg. (Rs.) | 10 | 15 | 2 |
|  | $\left(\frac{\text { Rs. } 1,80,000}{18,000 \mathrm{~kg}}\right)$ | $\left(\frac{\text { Rs. } 1,50,000}{10,000 \mathrm{~kg}}\right)$ | $\left(\frac{\text { Rs. } 1,08,000}{54,000 \mathrm{~kg}}\right)$ |
| Total cost per kg (Rs.) | 45 | 43 | 9 |

(iii) Statement showing the product wise and total profit for the period

| Products | A | B | X | Total |
| :--- | ---: | ---: | ---: | ---: |
| Sales value (Rs.) | $12,24,000$ | $2,50,000$ | $7,92,000$ |  |
| Add: Closing stock value (Rs.) <br> (Refer to Working note 2) | 45,000 | $2,15,000$ | 90,000 |  |
| Value of production (Rs.) | $12,69,000$ | $4,65,000$ | $8,82,000$ | $26,16,000$ |
| Apportionment of joint cost (Rs.) | $6,30,000$ | $2,80,000$ | $3,78,000$ |  |
| Add: Further processing cost (Rs.) | $1,80,000$ | $1,50,000$ | $1,08,000$ |  |
| Total cost (Rs.) | $8,10,000$ | $4,30,000$ | $4,86,000$ | $17,26,000$ |
| Profit (Rs.) | $4,59,000$ | 35,000 | $3,96,000$ | $8,90,000$ |

## Working Notes :

1. 

| Products | A | B | X |
| :---: | :---: | :---: | :---: |
| Sales value (Rs.) | 12,24,000 | 2,50,000 | 7,92,000 |
| Quantity sold (Kgs.) | 17,000 | 5,000 | 44,000 |
| Selling price Rs./kg | 72 | 50 | 18 |
|  | $\left(\frac{\text { Rs. } 12,24,000}{17,000 \mathrm{~kg}}\right)$ | $\left(\frac{\text { Rs. } 2,50,000}{5,000 \mathrm{~kg}}\right)$ | $\left(\frac{\text { Rs. } 7,92,000}{44,000 \mathrm{~kg}}\right)$ |

2. Valuation of closing stock:

Since the selling price per kg of products $A, B$ and $X$ is more than their total costs, therefore closing stock will be valued at cost.

| Products | A | B | X | Total |
| :--- | ---: | ---: | ---: | ---: |
| Closing stock (kgs.) | 1,000 | 5,000 | 10,000 |  |
| Cost per kg (Rs.) | 45 | 43 | 9 |  |
| Closing stock value | 45,000 | $2,15,000$ | 90,000 | 35,000 |
| $($ Rs. $)$ | (Rs. $45 \times 1,000 \mathrm{~kg})$ | (Rs. $43 \times 5,000 \mathrm{~kg})$ | $($ Rs. $9 \times 10,000 \mathrm{~kg})$ |  |

## (iv) Calculations for processing decision

| Products | A | B | X |
| :--- | ---: | ---: | ---: |
| Selling price per kg at the point of split off (Rs.) | 50 | 40 | 10 |
| Selling price per kg after further processing (Rs.) <br> (Refer to working Note 1) | 72 | 50 | 18 |
| Incremental selling price per kg (Rs.) | 22 | 10 | 8 |
| Less: Further processing cost per kg (Rs.) | $(10)$ | $(15)$ | $(2)$ |
| Incremental profit (loss) per kg (Rs.) | 12 | $(5)$ | 6 |

Product $A$ and $X$ has an incremental profit per unit after further processing, hence, these two products may be further processed. However, further processing of product $B$ is not profitable hence, product B shall be sold at split off point.

## Answer:

(b) (a) Material price variance:
$=($ Standard price - Actual Price $) \times$ Actual quantity
$=($ Rs. $4-$ Rs. 4.10$) \times 5,000=$ Rs. 500 Adv.
(b) Material usage variance:
$=$ (Std. quantity for actual output - Actual qtty.) $\times$ Std. price
$=(600 \times 5-3,500) \times 4=$ Rs. 2,000 Adv.
(c) Labour Rate Variance:
$=($ Standard rate - Actual rate $) \times$ Actual hours
$=($ Rs. $10-$ Rs. 9$) \times 1,700=$ Rs. 1,700 Fav.
(d) Labour Efficiency Variance:
$=$ (Standard hours for actual output - Actual hours $) \times$ Standard rate
$=(600 \times 3-1,700) \times$ Rs. 10
$=$ Rs. 1,000 Fav.
(e) Variable Overhead Expenditure Variance
$=$ (Actual Hours $\times$ Standard Rate) - Actual Overhead
$=(1,700 \times$ Rs. 1$)-$ Rs. 1,900
= Rs. 200 Adv.
(g) Fixed Overhead Expenditure Variance:
= (Budgeted overhead - Actual overhead)
$=(1,800 \times 0.50-900)=\mathrm{Nil}$
(h) Fixed Overhead Volume Variance:
$=$ (Std. hours for actual output - Budgeted hours) $\times$ Std. rate
$=(600 \times 3-1,800) \times$ Rs. $0.50=\mathrm{Nil}$
(i) Fixed Overhead Capacity Variance:
$=$ (Budgeted hours - Actual Hours) $\times$ Standard rate
$=(1,800-1,700) \times$ Rs. $0.50=$ Rs. 50 Adv.
(j) Fixed Overhead Efficiency Variance:
$=$ (Std. hours for actual output - Actual hours) $\times$ Standard rate
$=(600 \times 3-1,700) \times$ Rs. $0.50=$ Rs. 50 Fav.

## Answer: 4

## (a) (i) Evaluation of Option (i)

Selling Price $=$ Rs. $1800+$ Rs. $200=$ Rs. 2,000 Sales $=2000 \times 60 \%=1200$ Pieces

| Sales (1,200 pieces @ Rs. 2,000) | Rs. |
| :--- | ---: |
| Less: Direct Material $\left(\frac{\text { Rs. } 5,94,200}{1,500 \text { units }} \times 1,200\right)$ | $4,75,360$ |
| Direct Labour $\left(\frac{\text { Rs. } 4,42,600}{1,500 \text { units }} \times 1,200\right)$ | $3,54,080$ |
| Variable Overhead $\left(\frac{\text { Rs. } 11,97,000 \times 60 \%}{1,500 \text { units }} \times 1,200\right)$ | $5,74,560$ |
| Contribution | $9,96,000$ |
| Less: Fixed cost (Rs. $11,97,000 \times 40 \%)$ | $4,78,800$ |
| Profit | $5,17,200$ |

If price has been increased by $11.11 \%$ (increases by 200 on 1,800 ) sales goes down by $20 \%$ (decreased by 300 on 1,500 ). Change in demand is greater than change in price. Since the variable costs are still same profit has been arose to Rs. $5,17,200$ in-spite of high elasticity of demand. PH gems would not be able to sustain this policy on account of change if any in variable costs.
(ii) Evaluation of Option (ii)

|  |  | Rs. |
| :--- | :--- | ---: |
| Sales | Less: | Direct Material $\left(\frac{\text { Rs. } 5,94,200}{1,500}\right)$ |
|  | Cost of Tie PIN | 396.00 |
|  | Direct Labour $\left(\frac{\text { Rs. } 4,42,600}{1,500}\right)$ | 18.00 |
|  | 295.07 |  |
| $\quad$ Variable Overhead $\left(\frac{\text { Rs. } 11,97,000 \times 60 \%}{1,500}\right)$ | 478.80 |  |
| Contribution |  |  |
| P/V Ratio (Rs. $612 / 1800 \times 100)$ | 612.00 |  |

## Sales to required earn a profit of $\mathbf{2 0 \%}$

Sales $=\frac{\text { Rs. } 4,78,800+0.20 \text { of Sales }}{34.00 \%}$
Sales $=$ Rs. 34,20,000 or 1,900 units (Rs. 34,20,000/1800)
To earn profit $20 \%$ on sales of readymade suit (along with TIE PIN) company has to sold 1,900 units i.e. $95 \%$ of the full capacity. This sales level of 1,900 units is justified only if variable cost is constant. Any upside in variable cost would impact profitability, to achieve the desired profitability. Production has to be increased but the scope is limited to $5 \%$ only.

## Answer:

(b) (i) Preparation of Production Budget (in units)

|  | October | November | December | January |
| :--- | ---: | ---: | ---: | ---: |
| Demand for the month (Nos.) | 40,000 | 35,000 | 45,000 | 60,000 |
| Add: $20 \%$ of next month's | 7,000 | 9,000 | 12,000 | 13,000 |
| demand |  |  |  |  |
| Less: Opening Stock | $(9,500)$ | $(7,000)$ | $(9,000)$ | $(12,000)$ |
| Vehicles to be produced | 37,500 | 37,000 | 48,000 | 61,000 |

(ii) Preparation of Purchase budget for Part-X

|  | October | November | December |
| :--- | ---: | ---: | ---: |
| Production for the month <br> (Nos.) | 37,500 | 37,000 | 48,000 |
| Add: $40 \%$ of next month's <br> production | 14,800 | 19,200 | 24,400 |
|  | $(40 \%$ of 37,000$)$ | $(40 \%$ of 48,000$)$ | $(40 \%$ of 61,000) |
| No. of units required for <br> production | 2,300 | 56,200 | 72,400 |
| Less: Opening Stock <br> $(52300 \times 4$ units) | $(56200 \times 44,800$ | $2,89,600$ |  |
| No. of units $)$ <br> purchased | $(48,000)$ | $(59,200)$ | $(76,800)$ |

(iii) Budgeted Gross Profit for the Quarter October to December

|  | October | November | December | Total |
| :--- | ---: | ---: | ---: | ---: |
| Sales in nos. | 40,000 | 35,000 | 45,000 | $1,20,000$ |
| Net Selling Price per unit* | $7,28,535$ | $7,28,535$ | $7,28,535$ |  |
| Sales Revenue (Rs. in lakh) | $2,91,414$ | $2,54,987.25$ | $3,27,840.75$ | $8,74,242$ |
| Less: Cost of Sales (Rs. in lakh) | $2,28,560$ | $1,99,990.00$ | $2,57,130.00$ | $6,85,680$ |
| (Sales unit $\times$ Cost per unit) |  |  |  |  |
| Gross Profit (Rs. in lakh) | 62,854 | $54,997.25$ | $70,710.75$ | $1,88,562$ |

$\left.\begin{array}{l}\text { Net Selling price unit }=\text { Rs. 8,57,100 - 15\% commission on Rs. 8,57,100 }=\text { Rs. }\end{array}\right\}\{\mathbf{4 ~ M \}}$

## Answer: 5

(a) 1 .

|  | Annual cost of each employee | Rs. |
| ---: | :--- | ---: |
| 1. | Salary (30,000×12) | $3,60,000$ |
| 2. | Bonus (25\% of Salary) | 90,000 |
| 3. | Employees Contribution to PF (15\% of Salary) | 54,000 |
| 4. | Employers welfare (661500/175) | 3,780 |
|  | Total Annual Cost | $5,07,780$ |

2. 

| Effective Working hours ( 310 days $\times 8$ hours) <br> Less: Leave days ( 30 days $\times 8$ hours) <br> Available Working hours <br> Less: Normal Loss @ | 2480 hours |
| :---: | :---: |
|  | 240 hours* |
|  | 2240 hours |
|  | 70 hours |
|  | 2170 hours |
| Employee Cost per hour $\frac{507780}{2170}=$ Rs. 234 |  |
| *It is assumed 310 working days are wit consideration | mitted into |

3. Cost of abnormal idle time per employee $=$ Rs. $234 \times 50$ hours $=$ Rs. $\}\{2 \mathrm{M}\}$
11700

Employee cost per hour:
(2) Calculation of

2,480 *
Working hours per annum 70
Less: Normal Idle time hours
2,410
Effective hours
Employee cost
5,07,780
Employee cost per hour
210.70
*It is assumed 310 working days are after adjusting leave permitted during the year.
(3) Cost of Abnormal idle time per employee:

Abnormal Idle time hours
Employee cost per hour
Cost of Abnormal idle time ( $210.70 \times 50$ )
(b) Calculation of Cost of Production of Arnav Metallic for the period.....

| Particulars | Amount (Rs.) |
| :--- | ---: |
| Raw materials purchased | $\mathbf{6 4 , 0 0 , 0 0 0}$ |
| Add: Opening stock | $\mathbf{2 , 8 8 , 0 0 0}$ |
| Less: Closing stock | $\mathbf{( 4 , 4 6 , 0 0 0 )}$ |
| Material consumed | $\mathbf{6 2 , 4 2 , 0 0 0}$ |
| Wages paid | $\mathbf{2 3 , 2 0 , 0 0 0}$ |
| Prime cost | $\mathbf{8 5 , 6 2 , 0 0 0}$ |
| Repair and maintenance cost of plant \& machinery | $\mathbf{9 6 , 0 0 0}$ |
| Insurance premium paid for inventories | $\mathbf{9 6 , 0 0 0}$ |
| Insurance premium paid for plant \& machinery | $\mathbf{8 6 , 0 0 0}$ |
| Quality control cost | $\mathbf{9 2 , 6 0 0}$ |
| Research \& development cost | $\mathbf{9 , 0 0 , 0 0 0}$ |
| Administrative overheads related with factory and production | $\mathbf{1 , 0 7 , 4 3 , 1 0 0}$ |
| Add: Opening value of W-I-P | $\mathbf{4 , 0 6 , 0 0 0}$ |
| Less: Closing value of W-I-P | $\mathbf{( 6 , 0 2 , 1 0 0}$ |
|  | $\mathbf{1 , 0 5 , 4 7 , 0 0 0}$ |
| Less: Amount realised by selling scrap | $\mathbf{( 9 , 2 0 0 )}$ |
| Add: Primary packing cost | $\mathbf{1 0 , 2 0 0}$ |
| Cost of Production | $\mathbf{1 , 0 5 , 4 8 , 0 0 0}$ |

\{1/2 M Each $\}$

## Notes:

(i) Other administrative overhead does not form part of cost of production.
(ii) Salary paid to Director (Technical) is an administrative cost.

## Answer 6:

(a) (a) Discretionary Cost Centre: The cost centre whose output cannot be measured in financial terms, thus input-output ratio cannot be defined. The cost of input is compared with allocated budget for the activity. Example of discretionary cost centres are Research \& Development department, Advertisement department where output of these department cannot be measured with certainty and co- related with cost incurred on inputs.
(b) Investment Centres: These are the responsibility centres which are not only responsible for profitability but also has the authority to make capital investment decisions. The performance of these responsibility centres are measured on the basis of Return on Investment (ROI) besides profit. Examples of investment centres are Maharatna, Navratna and Miniratna companies of Public Sector Undertakings of Central Government.

## Answer:

(b) Cost plus contracts have the following advantages:
(a) The Contractor is assured of a fixed percentage of profit. There is no risk of incurring any loss on the contract.
(b) It is useful specially when the work to be done is not definitely fixed at the time of making the estimate.
(c) Contractee can ensure himself about 'the cost of the contract', as he is empowered to examine the books and documents of the contractor to ascertain the veracity of the cost of the contract.

## Answer:

(c) The advantages of zero-based budgeting are as follows:

- It provides a systematic approach for the evaluation of different activities and rank them in order of preference for the allocation of scarce resources.
- It ensures that the various functions undertaken by the organization are critical for the achievement of its objectives and are being performed in the best possible way.
- It provides an opportunity to the management to allocate resources for various activities only after having a thorough cost-benefit-analysis. The chances of arbitrary cuts and enhancement are thus avoided.
- $\quad$ The areas of wasteful expenditure can be easily identified and eliminated.
- Departmental budgets are closely linked with corporation objectives.
- The technique can also be used for the introduction and implementation of the system of 'management by objective.' Thus, it cannot only be used for fulfillment of the objectives of traditional budgeting but it can also be used for a variety of other purposes.


## Answer:

(d) This product costing system is used when an entity produces more than one variant of final product using different materials but with similar conversion activities. Which means conversion activities are similar for all the product variants but materials differ significantly. Operation Costing method is also known as Hybrid product costing system as materials costs are accumulated by job order or batch wise but conversion costs i.e. labour and overheads costs are accumulated by department, and process costing methods are used to assign these costs to products. Moreover, under operation costing, conversion costs are applied to products using a predetermined application rate. This predetermined rate is based on budgeted conversion costs.
The two example of industries are Ready made garments and Jewellery making.

