(GCF-19, GCF-20, GCF-21, GCF-22, GCF-23, VCF-4, SCF-8, NOV-20 PD \& GD, Foundation Nov. 19 Rep.)
DATE: 10.08.2020
MAXIMUM MARKS: 100
TIMING: 2 Hours

BUSINESS MATHEMATICS, REASONING \& STATISTICS

1. Ans. a

Explanation:

$$
\begin{aligned}
& P_{1}=x, \quad P_{2}=20,000-x \\
& \frac{x \times 8 \times 1}{100}+\frac{(20,000-x) \times 4 \times 1}{300}=800 \\
& x=8,000
\end{aligned}
$$

2. Ans. b
$C I=P\left(1+\frac{r}{100}\right)^{n}-P$
$2,59,712=10,00,000\left(1+\frac{8}{100}\right)^{n}-10,00,000$
$1.259712=(1.08)^{n}$
$\mathrm{n}=3$ years
3. Ans. b

Explanation:
$\left[\begin{array}{ccc}x+x y & 2 x+y^{2} & 3 x+y z \\ 2+3 x & 4+3 y & 6+3 z\end{array}\right]$
4. Ans. C

Explanation:
Region represented by the line $3 x+2 y=24$ meets the coordinate axes at $(8,0)$ and $(0,12)$. Since the shaded region lies below the line $3 x+2 y=24$ therefore it is represented by less than or equal to sign i.e. $3 x+2 y \leq 24$.
Similarly for th eline $x+2 y=16$ the shaded region lies below the line therefore it is represented by less than or equal to sign i.e. $x+2 y \leq 16$
Clearly $\mathrm{X} \geq 0$ and $\mathrm{y} \geq 0$ represents the region lying on the right side of y axis and above x axes.
5. Ans. d

Explanation:
No. of ways $=7 C_{4} \times 3 C_{2}+7 C_{3} \times 3 C_{3}$

$$
=105+35=140
$$

6. Ans. d

Explanation:
(a, a), (b, b), (c, c) ε R
So R is a reflexive relation
But $(a, b) \in \mathrm{R}$ and (b, a) $\notin \mathrm{R}$
Thus, R is not a symmetric relation.

Also, (a, b), $(\mathrm{b}, \mathrm{c}) \varepsilon \mathrm{R} \Rightarrow(\mathrm{a}, \mathrm{c}) \notin \mathrm{R}$
Hence R is not a transitive relation
7. Ans. a

Explanation:
Present value of growing property $=\frac{R}{i-g}$

$$
=\frac{60}{0.07-0.05}=3000
$$

8. Ans. c
$S I=\frac{\operatorname{Pr} t}{100}$
$\frac{1800 \times 4 \times t}{100}-\frac{1650 \times 4 \times t}{100}=30$
$\mathrm{t}=5$ years
9. Ans. b

Explanation:
${ }^{\mathrm{n}+2} \mathrm{Cr}{ }^{=}{ }^{\mathrm{n}+2} \mathrm{C}_{10-\mathrm{r}}$
or $\mathrm{n}+2=\mathrm{r}+10-\mathrm{r}$
or $\mathrm{n}=8$
then $8_{C_{6}}=28$
10. Ans. a
$\log _{5}{ }^{1024}$
$=\frac{\log ^{1024}}{\log _{5}}$
$=\frac{10 \log ^{2}}{\log _{5}}$
$=\frac{10 \log ^{2}}{\log _{10}-\log _{2}}=\frac{10 \times 0.3010}{1-0.3010}$
11. Ans. a
$A=P\left(1+\frac{r}{100}\right)^{n}$
$A=50,000\left(1+\frac{2}{100}\right)^{2}$
$=52,020$
12. Ans. b

Mean Proportion
$=\sqrt{\frac{a-b}{a+b} \times \frac{a^{2} b^{2}}{a^{2}-b^{2}}}$
$=\frac{a b}{a+b}$
13. Ans. c

Explanation:

$$
\begin{aligned}
& \mathrm{A}^{-1}= \frac{\operatorname{adj}(\mathrm{A})}{|\mathrm{A}|} \\
& \begin{aligned}
\operatorname{adj} \mathrm{A} & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]^{T} \\
& =\left[\begin{array}{cc}
2 & -3 \\
2 & 1
\end{array}\right]^{T} \\
& =\left[\begin{array}{cc}
2 & 2 \\
-3 & 1
\end{array}\right] \\
|\mathrm{A}| & =2-(-6)=2+6=8 \\
\mathrm{~A}^{-1} & =\frac{1}{8}\left[\begin{array}{cc}
2 & 2 \\
-3 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 / 4 & 1 / 4 \\
-3 / 8 & 1 / 8
\end{array}\right]
\end{aligned}
\end{aligned}
$$

14. Ans. c
$100---------\rightarrow 200-----------\rightarrow 400-----------\rightarrow$
Total $=15$ years.
15. Ans. d

Income	Expenses	Savings
100	75	25
120	82.5	37.5

$\%$ increase in his savings $=\frac{37.5-25}{25} \times 100$
$=50$
16. Ans. c

Explanation:
$\int \frac{8^{1+x}+4^{1-x}}{2^{x}} d x$
$=\int \frac{2^{3 x+3}+2^{2-2 x}}{2^{x}} d x$
$=\int \mathbf{s}^{2 x+3}+2^{2-3 x}-\bar{d} x$
$=\frac{2^{2 x+3}}{2 \log 2}+\frac{2^{2-3 x}}{4 \log 2}+c$
$=\frac{2^{2 x+3}}{2 \log 2}-\frac{2^{2-3 x}}{3 \log 2}+c$
17. Ans. b
$A=P\left(1+\frac{r t}{100}\right)$
$180=100\left(1+\frac{r \times 8}{100}\right)$
$r=10 \%$
$C I=14,000\left(1+\frac{10}{100}\right)^{3}-14,000=4,634$
18. Ans. b

Let the three consecutives
Multiples of 13 is
$13 x, 13 x+13,13 x+26$
$13 x+13 x+13+13 x+26=390$
$39 x+39=390$
$39 x=351$
$x=9$
Second Multiple of $13=13 x+13$

$$
\begin{aligned}
& =13 \times 9+13 \\
& =130
\end{aligned}
$$

19. Ans. b

Explanation:
$T_{5}=a+4 d=14$
$\mathrm{T}_{12}=\mathrm{a}+11 \mathrm{~d}=35$
On solving equation (i) and (ii)
$a=2$
20. Ans. d

Explanation:
$\mathrm{A}=\frac{\mathrm{P}}{\mathrm{r}}\left[(1+\mathrm{r})^{\mathrm{n}}-1\right]$
Here $r=\frac{6}{100 \times 4}=0.015$
$\mathrm{n}=5 \times 4=20$

Now $50,000=\frac{\mathrm{P}}{0.015}\left[1.015^{20}-1\right]$
$=\frac{\mathrm{P}}{0.015} 1.346-1$
$\mathrm{P}=\frac{50,000 \times 0.15}{0.346}$
$P=$ Rs. 2162.2866
21. Ans. c

Explanation:
Total line can be made by $10 \mathrm{c}_{2}$
and $7_{C_{2}}$ lines could not be drawn because points are collinear
So Remaining $\Rightarrow 10_{\mathrm{C}_{2}}-7_{\mathrm{C}_{2}}+1$
$\Rightarrow 25$
22. Ans. a

Explanation :
$f(x)=(x-1)^{3}+2$ (bijection function)
Let $(x-1)^{3}+2=y$
$(x-1)^{3}=y-2$
$x=(y-2)^{1 / 3}+1$
So $f^{-1}=(x-2)^{1 / 3}+1$
23. Ans. a

Explanation:

$$
\begin{aligned}
& 2 \mathrm{x}^{2}+5 \mathrm{xy}+3 \mathrm{y}^{2}=1 \\
& 4 x+5 x \frac{d y}{d x}+5 y+6 y \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{-4 x-5 y}{5 x+6 y}
\end{aligned}
$$

24. Ans. C

Explanation:
Let us denote by x , the number of bags of fertilizers of grade I and by y , the number of bags of fertilizers of grade II produced in a week. We are given that grade I fertilizer requires 6 hours in plant A and grade II fertilizer requires 3 hours in plant A and plant A has maximum of 120 hours available in a week. Thus $6 x+3 y \leq 120$.
Similarly grade I fertilizer requires 4 hours in plant B and grade II fertilizer requires 10 hours in Plant B and Plant B has maximum of 180 hours available in a week. Hence, we get the inequality $4 x+10 y \leq 180$.
25. Ans. c

Explanation:
$x^{2}+x+2=0$
$\alpha+\beta=-1, \alpha \beta=2$
$(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta$
$1=\alpha^{2}+\beta^{2}+4$
$\alpha^{2}+\beta^{2}=-3$

$$
\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{-3}{2}
$$

26. Ans. d

Explanation:
The required no. of ways $=4!\times 3!=144$
27. Ans. c

Explanation:
The no. of ways $\quad={ }^{4} \mathrm{P}_{3} \times 4$!

$$
=24 \times 24=576
$$

28. Ans. b

Explanation:
$\log \left(a+\sqrt{a^{2}+1}\right)+\log \left(a+\sqrt{a^{2}+1}\right)^{-1}$
$=\log \left(a+\sqrt{a^{2}+1}\right)-\log \left(a+\sqrt{a^{2}+1}\right)$
$=0$
29. Ans. C

Explanation:
$a=132$, $l=468$
$\mathrm{I}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$468=132+(n-1)(12)$
$\mathrm{n}=29$
$\mathrm{s}_{\mathrm{n}}=\frac{n}{2}(a+l)$
$\mathrm{s}_{29}=\frac{29}{2}(132+468)=8700$
30. Ans. b

Explanation:
$\mathrm{P}=\frac{\mathrm{R}}{r}=\frac{30,000}{0.58}=5,17,241.8$
31. Ans. a

Explanation:
Scrap Value $=P\left(1-\frac{r}{100}\right)^{n}$
$21,870=P(.9)^{3}$
P = Rs. 30,000
32. Ans. d

Explanation:
$\mathrm{E}=\left[\left(1+\frac{9.9}{1200}\right)^{12}-1\right] \times 100$
$=10.36 \%$
33. Ans. a

Explanation:
CI - SI = 372
$P\left(1+\frac{r}{100}\right)^{n}-P-\frac{\operatorname{Pr} t}{100}=372$
$P\left(1+\frac{10}{100}\right)^{2}-P-\frac{P \times 10 \times 2}{100}=372$
$P=37,200$
34. Ans. a

Explanation:
$A=P\left(1+\frac{r}{100}\right)^{n}$
$2,00,000=P\left(1+\frac{5}{100}\right)^{2}$
$\mathrm{P}=$ Rs. 1.81 Lakh
35. Ans. b

Explanation:

$$
2^{a}=3^{b}=12^{c}=k
$$

$2 \times 2 \times 3=12$
$k^{1 / a} \times k^{1 / a} \times k^{1 / b}=k^{1 / c}$
$\frac{2}{a}+\frac{1}{b}=\frac{1}{c}$
$\frac{2 b+a}{a b}=\frac{1}{c}$
$a b=c(a+2 b)$
36. Ans. c

Explanation:
$S_{\infty}=\frac{a}{1-r}$
$a=2, b=\frac{6}{5}$
$a b=\frac{12}{5}$
37. Ans. b

Explanation:
(AUB')'
$=A^{\prime} \cap B$
$=B-A$
38. Ans: a

Explanation:

$$
\begin{array}{r}
\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1}{\mathrm{t}} \text { and } \frac{\mathrm{dy}}{\mathrm{dt}}=-\frac{1}{\mathrm{t}^{2}} \\
\begin{aligned}
\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}=\frac{-\frac{1}{t^{2}}}{\frac{1}{\mathrm{t}}} & =-\frac{1}{\mathrm{t}} \\
& =-\mathrm{y}
\end{aligned}
\end{array}
$$

Differentiating w.r.t. x

$$
\begin{aligned}
& \frac{d^{2} y}{{d x^{2}}^{2}}=-\frac{d y}{d x} \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0
\end{aligned}
$$

39. Ans. c

Explanation:
SI for 5 years $=1020-720$

$$
=300
$$

SI for years $=\frac{300}{5} \times 2$

$$
=\text { Rs. } 120
$$

Principal $=$ Rs. $720-$ Rs. 120

$$
=\text { Rs. } 600
$$

40. Ans. c

Explanation:
$A^{\top}=-A$
$\left|A^{\top}\right|=|-A|$
$|A|=-|A|$
$|A|+|A|=0$
$2|A|=0$
$|A|=0$
41. Ans. b
42. Ans. c
43. Ans. c
44. Ans. a
45. Ans. d
46. Ans. b
47. Ans. c
48. Ans. d
49. Ans. a
50. Ans. a
51. Ans. C
52. Ans. C
53. Ans. a
54. Ans. c
55. Ans. d
56. Ans. d
57. Ans. d
58. Ans. b
59. Ans. c
60. Ans. a
61. Ans. d

Explanation:
In tabulation 'Caption' is the upper part of the table that describes the column and sub-column.
62. Ans. c

Explanation:
Bar diagrams are one dimensional diagrams.
63. Ans. b

Combined H.M. =

$$
\left(\frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{\frac{\mathrm{n}_{1}}{\mathrm{H}_{1}}+\frac{\mathrm{n}_{2}}{\mathrm{H}_{2}}}\right)=\frac{2+3}{\frac{2}{\left(\frac{2}{5}\right)}+\frac{3}{\left(\frac{1}{5}\right)}}
$$

$$
\begin{aligned}
& =\frac{5}{5+15} \\
& =\frac{5}{20}=\frac{1}{4}
\end{aligned}
$$

64. Ans. d

$$
\begin{aligned}
& \text { Explanation : } \bar{x}=3, M D_{x}=0.3 \\
& 2 \bar{x}+3 \bar{y}-7=0 \\
& \\
& \bar{y}=\frac{1}{3} \\
& \\
& \text { MD of } y=\left|\frac{2}{3}\right| M D \text { of } X=\frac{1}{5} \\
& \\
& \text { Co-efficient of mean deviation of } y \text { about mean }= \\
& \\
& =\frac{\text { M.D of } Y}{\bar{y}} \times 100=60
\end{aligned}
$$

65. Ans. b

Explanation:
Given x takes $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \mathrm{x}_{10},-\mathrm{x}_{1},-\mathrm{x}_{2}, \ldots \ldots . .-\mathrm{x}_{10}$
$\therefore \sum_{i=1}^{20} \mathrm{x}_{\mathrm{i}}=0$
and given $\sum_{i=1}^{20} x_{i}^{2}=40$
\therefore S.D. of $x=\sqrt{\frac{\sum_{i=1}^{20} x_{i}^{2}}{n}-\left(\frac{\sum_{i=1}^{20} x_{i}}{n}\right)^{2}}$
$=\sqrt{\frac{40}{20}-\left(\frac{0}{20}\right)^{2}}=\sqrt{2}$
66. Ans. b

Explanation:
G.M. $=\left(2 \times 2^{2} \times 2^{3} \times 2^{4} \times 2^{5} \times 2^{6}\right)^{1 / 6}$
$=2^{7 / 2}$
67. Ans. d

Explanation:
$\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{P(A \cap B)}{P(B)}=\frac{1}{2}$
The following table gives distribution of wages of 100 workers:

Wages (Rs.)	$120-140$	$140-160$	$160-180$	$180-200$	$200-220$	$220-240$	$240-260$
No. of Workers	9	20	0	10	8	35	18

The probability that his wages are under Rs. 140 is :
(a) $20 / 100$
(b) $9 / 100$
(c) $29 / 100$
(d) None
68. Ans. b

Explanation:
The probability that his wages are under Rs. $140=9 / 100$.
69. Ans. d
70. Ans. a

Explanation:
Income in $2010=$ Income in $2005 \times \frac{\mathrm{CPI} \text { in } 2010}{\text { CPI in } 2005}$

$$
=25000 \times \frac{220}{160}=34375 \mathrm{Rs} .
$$

So Dearness allowance $=34375-25000=9375$
71. Ans. a

Explanation:
$\mathrm{Q}_{1}=\mathrm{m}-0.675 \mathrm{~s}=13.25$
$M D=0.8 \mathrm{~s}=8$
$\mathrm{s}=10$
$\mathrm{m}=20$
mode $=20$
72. Ans. a

Explanation :

Commodity	A	B	C	D	E	F
Group Index (R)	120	132	98	115	108	98
Weight (W)	6	3	4	2	1	4
(RW)	720	396	392	230	108	392

General Index $=\frac{\sum \mathrm{RW}}{\Sigma \mathrm{W}}=\frac{2238}{20}=111.90$
73. Ans. b

Explanation:
$5 \mathrm{x}+2 \mathrm{y}=6$
$2 \mathrm{y}=6-5 \mathrm{x}$
$y=\frac{6}{2}-\frac{5 x}{2}$
$|\mathrm{b}|=\left|\frac{-5}{2}\right|=\frac{5}{2}$
[coefficient of x]
mean deviation of $y=|b| \times$ mean deviation of x about mean.
$=\frac{5}{2} \times 6=15$
74. Ans. b

Explanation : If two variables are uncorrelated (i.e. $r=0$) then regression lines are perpendicular.
75. Ans. b

Explanation : $r=\frac{\operatorname{Cov}(x, y)}{\operatorname{SD}_{x} \cdot \mathrm{SD}_{\mathrm{y}}}$

$$
\begin{aligned}
& 0.28=\frac{7.6}{3 \times S D_{y}} \\
& S D_{y}=9.048
\end{aligned}
$$

76. Ans. a
77. Ans. b

Explanation:
Standard deviation is affected by change of scale so variance is $25 \times 9=225$.
78. Ans. C

Explanation:
$P_{2000,2003}=\frac{P_{2003} \times 100}{P_{2000}}$
$=\frac{60 \times 100}{15}=400 \%$
79. Ans. c
80. Ans. c

Explanation:
$\mathrm{x}=\frac{L C L+U C L}{2}=\frac{L+U C L}{2}=M$
$U C L=2 m-L$
81. Ans. b

Explanation:
$\operatorname{Cov}(X, Y)$
$=\frac{1}{n}\left\{\sum_{i=1}^{n} x_{i} y_{i}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)\right\}$
$=(1 / 5)(110-(1 / 5) \times 15 \times 36)$
$=(1 / 5)(110-108)=(2 / 5)=0.4$
82. Ans. a

Explanation:

x	300	-80
p	0.57	0.43

Expected value $=300 \times 0.57-80 \times 0.43=136.6$
83. Ans. d
84. Ans. d
85. Ans. b

Explanation:
Chain index number for
$1993: \quad \frac{103 \times 100}{100}=103$
$1994: \quad \frac{103 \times 105}{100}=108.15$
$1995: \quad \frac{108.15 \times 112}{100}=121.13$
$1996: \quad \frac{121.13 \times 108}{100}=130.82$
86. Ans. a

Explanation:
Let n positive observations are

$$
\begin{aligned}
& \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3},---, \mathrm{x}_{\mathrm{n}} \\
& \therefore \quad \mathrm{HM}=\left(\frac{\mathrm{n}}{\frac{1}{\mathrm{x}_{1}}+\frac{1}{\mathrm{x}_{2}}+---+\frac{1}{\mathrm{x}_{\mathrm{n}}}}\right)=\mathrm{h} \\
& \therefore \quad \text { (given) }
\end{aligned}
$$

since each observation is repeated once more time.
$\therefore \mathrm{n}$ will become $\rightarrow 2 \mathrm{n}$
Hence new HM $=\frac{2 \mathrm{n}}{\left(\frac{1}{\mathrm{x}_{1}}+\frac{1}{\mathrm{x}_{1}}\right)+\left(\frac{1}{\mathrm{x}_{2}}+\frac{1}{\mathrm{x}_{2}}\right)+\ldots+\left(\frac{1}{\mathrm{x}_{\mathrm{n}}}+\frac{1}{\mathrm{x}_{\mathrm{n}}}\right)}$

$$
\begin{aligned}
& \frac{2 \mathrm{n}}{2\left(\frac{1}{\mathrm{x}_{1}}+\frac{1}{\mathrm{x}_{2}}+---+\frac{1}{\mathrm{x}_{\mathrm{n}}}\right)} \\
= & \mathrm{h}
\end{aligned}
$$

87. Ans. c
88. Ans. b

Explanation : $\bar{x}=1500, S D=400$
After $1^{\text {st }}$ year
Mean $=1500+20 \%$ of $1500=1800$
SD $=400+20 \%$ of $400=480$
After $2^{\text {nd }}$ year
Mean $=1800+100=1900$
SD $=480$ (no change)
89. Ans. a
90. Ans. b
91. Ans. b

Explanation:

$$
\begin{aligned}
\frac{\sigma_{x}}{\sigma_{y}} & =\sqrt{\frac{b_{x y}}{b_{y x}}} \\
& =\sqrt{\frac{8}{15}} \\
& =0.73
\end{aligned}
$$

92. Ans. b

Explanation:
$\frac{L}{P}=\frac{\frac{\sum p_{1} q_{0}}{\sum p_{0} q_{0}}}{\frac{\sum p_{1} q_{1}}{\sum p_{0} q_{1}}}=\frac{\frac{20+5 x}{15}}{\frac{10+2 x}{7}}=\frac{28}{27}$
$=\frac{140+35 x}{150+30 x}=\frac{28}{27}$
$x=4$
93. Ans. c
94. Ans. b

Explanation: Chain index for any year
$=\frac{\text { Linkrelative(index)of currentyear×Chainindexof the previousyear }}{100}$
95. Ans. c

Explanation:

Commodity	R	W	RW
I	110	3	330
II	120	3	360
III	70	1	70
Total		7	760

Weighted Price Index $=\frac{\Sigma R W}{\Sigma W}=\frac{760}{7}=108.5$
96. Ans. b
97. Ans. a

Explanation:
The regression line : $y-\bar{y}=b_{y x} x-\bar{x}$
or $y-8.8=1.24(x-5.5)$
$\Rightarrow y=1.24 x+1.98$
98. Ans. b

Explanation:
The two lines of regression are
$2 x-7 y+6=0$
....(1)
and $7 x-2 y+1=0$
....(2)
If we take (1) as the regression equation of Y on X, then (2) is that of X on Y. We can write these as:
$y=\frac{2}{7} x+\frac{6}{7}$ and $x=\frac{2}{7} y-\frac{1}{7}$
respectively.
$\therefore \mathrm{b}_{\mathrm{yx}}=\frac{2}{7}$ and $\mathrm{b}_{\mathrm{xy}}=\frac{2}{7}$
$\Rightarrow \mathrm{b}_{\mathrm{yx}} \mathrm{b}_{\mathrm{xy}}=\frac{2}{7} \times \frac{2}{7}=\frac{4}{49}<1$
So, our choice is valid.
Now, $r^{2}=b_{y x} b_{x y}=\frac{4}{49} \Rightarrow r=\frac{2}{7}$
(Note that $b_{y x}>0$), so $r>0$
99. Ans. c

Explanation:
Sum of deviation from mean for any set of observation is Zero.
100. Ans. a

Explanation:
For two positive numbers SD is always Half of range.

