(CA INTERMEDIATE MOCK TEST MAY 2021)
DATE: 28.02.2021

PAPER : COSTING

Answer to questions are to be given only in English except in the case of candidates who have opted for Hindi Medium. If a candidate who has not opted for Hindi Medium. His/her answer in Hindi will not be valued.

Question No. 1 is compulsory.
Candidates are also required to answer any Four questions from the remaining Five Questions.
In case, any candidate answers extra question(s)/sub-question(s) over and above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.
Wherever necessary, suitable assumptions may be made and disclosed by way of note.

Answer 1:

(a) Option (i)

Increase in profit when due to change in a manufacturing process there is reduction in joint fixed cost and increase in variable costs.

	(Rs.)
Revised Contribution from 12,000 units of A due to 7.5% increase in Variable Cost $\{12,000$ units $\times($ Rs. $200-$ Rs. 129$)\}$	$8,52,000$
Revised Contribution from 12,000 units of B due to 7.5% increase in Variable Cost $\{12,000$ units $\times($ Rs. $120-$ Rs. 64.50$)\}$	$6,66,000$
Total Revised Contribution	$15,18,000$
Less: Fixed Cost (Rs. $15,00,000-15 \% \times$ Rs. 15,00,000)	$12,75,000$
Revised Profit	$2,43,000$
Less: Existing Profit	$1,80,000$
Increase in Profit	$63,000\}\{\mathbf{~ M}\}$

Option (ii)

Increase in profit when the price of product A increased by 20% and the price elasticity of its demand would be unity over the range of price.

	(Rs.)
Budgeted Revenue from Product A (12,000 units \times Rs. 200)	$24,00,000$
Revised Demand (in units) (Rs. $24,00,000 /$ Rs. 240)	10,000
Revised Contribution (in Rs.) $[10,000$ units $\times($ Rs. $240-$ Rs. 120)]	$12,00,000$
Less: Existing Contribution (12,000 units \times Rs. 80)	$9,60,000$
Increase in Profit (Contribution)	$2,40,000\}\{1 \mathbf{~ m}\}$

*Note: Since Price Elasticity of Demand is 1, therefore the Revenue in respect of Products will remain same.

Option (iii)

Increase in profit on the simultaneous introduction of above two options.

(Rs.)	
Revised Contribution from Product A [10,000 units $\times($ Rs. $240-$ Rs. $129)]$	$11,10,000$
Revised Contribution from Product B [12,000 units \times (Rs. $120-$ Rs. $64.50)]$	$6,66,000$
Total Revised Contribution	$17,76,000$
Less: Revised Fixed Cost	$12,75,000$
Revised Profit	$5,01,000$
Less: Existing Profit	$1,80,000$
Increase in Profit	$3,21,000$

A comparison of increase in profit figures under above three options clearly indicates that the option (iii) is the best as it increases the profit of the concern by Rs. 3,21,000.
Note: The budgeted profit / (loss) for 2018 in respect of products A and B should be Rs. 2,10,000 and (Rs. 30,000) respectively instead of Rs. 1,50,000 and Rs. 30,000.

Workings

1. Contribution per unit of each product:

	Product	
	A (Rs.)	B (Rs.)
Contribution per unit	80	60
(Sales \times P/V Ratio)	(Rs. $200 \times 40 \%$)	(Rs. $120 \times 50 \%$)

2. Number of units to be sold:

Total Contribution - Fixed Cost = Profit
Let x be the number of units of each product sold, therefore: $(80 x+60 x)$

- Rs. $15,00,000=$ Rs. $1,50,000+$ Rs. 30,000

Or $x=12,000$ units
[$)$

Answer:

(b) (a)

Working Notes:

Particulars	For 4 weeks	For 1 week (by dividing by 4)
Total distance travelled $(40 \mathrm{k} . \mathrm{m} \times$ 2×2 trips $\times 5$ days $\times 4$ weeks $)$	$3,200 \mathrm{~km}$	800 km
Total tonne $\mathrm{km}(40 \mathrm{k} . \mathrm{m} \times 10$ tonnes $\times 2 \times 5$ days $\times 4$ weeks $)$	16,000 tonne km	4,000 tonne km

(i) Statement showing Operating Cost

Particulars		For 4 weeks	For 1 week (by dividing by 4)
A.	Fixed Charges:		
	Drivers' wages (Rs. $2,500 \times 4$ weeks)	10,000	2,500
	Garage rent (Rs. 800×4 weeks)	3,200	800
	Insurance $\{($ Rs. $18,200 \div 52$ weeks $) \times 4$ weeks $\}$ weeks $\}$	1,400	350
	Vehicle license \{(Rs. 7,800 $\div 52$ weeks) $\times 4$ weeks $\}$	600	150
	Other overheads cost \{(Rs. 41,600 $\div 52$ weeks) $\times 4$ weeks $\}$	3,200	800
	Total (A)	18,400	4,600
B.	Running Cost:		
	Cost of diesel $\{(3,200 \div 8 \mathrm{kms}) \times$ Rs. 60$\}$	24,000	6,000
	Engine Oil (Rs. 200×4 weeks)*	800	200
	Repairs (Rs. 600×4 weeks)*	2,400	600
	$\begin{aligned} & \text { Depreciation on vehicle } \\ & \left(\frac{₹ 9,50,000-₹ 1,50,000}{1,60,000 \mathrm{~km}} \times 3,200 \mathrm{~km}\right) \end{aligned}$	16,000	4,000
	Depreciation on tyres Depreciation on tyres $\left(\frac{252,500}{25,000 \mathrm{~km}} \times 3,200 \mathrm{~km}\right)$	6,720	1,680
	Total (B)	49,920	12,480
C.	Total Cost ($\mathrm{A}+\mathrm{B}$)	68,320	17,080

*Cost of engine oil \& repairs may also be treated as fixed cost, as the question relates these with time i.e. in weeks instead of running of vehicle.
(ii) Calculation of vehicle operating cost:

Answer:

(c) Statement of cost per batch and per order

No. of batch $=600$ units $\div 50$ units $=12$ batches

	Particulars	$\begin{array}{r}\text { Cost per } \\ \text { batch (Rs.) }\end{array}$	$\begin{array}{c}\text { Total Cost } \\ \text { (Rs.) }\end{array}$
	Direct Material Cost	$5,000.00$	60,000
	Direct Wages	500.00	6,000
	Oven set-up cost	750.00	9,000
	Add: Production Overheads	100.00	1,200
	(20\% of Direct wages)	$6,350.00$	76,200
	Total Production cost	635.00	7,620
	Add: S\&D and Administration overheads		
	(10\% of Total production cost)		

(iii) If the order is for 605 cakes, then selling price per cake would be as below:

Particulars	Total Cost (Rs.)
Direct Material Cost	60,500
Direct Wages (Rs. 500×13 batches)	6,500
Oven set-up cost (Rs. 750×13 batches)	9,750
Add: Production Overheads (20\% of Direct wages)	1,300
Total Production cost	78,050
Add: S\&D and Administration overheads	7,805
(10\% of Total production cost)	85,855
Total Cost	28,618
Add: Profit $\left(1 / 3^{\text {rd }}\right.$ of total cost)	$1,14,473$
Sales price	605 units
No. of units	189.21
Selling price per unit (Rs. $1,14,473 \div 605$ units)	

Answer:

(d) Calculation of :

1. Time saved and wages:

Workmen	A	B
Standard time (hrs.)	40	40
Actual time taken (hrs.)	32	30
Time saved (hrs.)	8	10
Wages paid @ Rs. x per hr. (Rs.)	32 x	30 x

2. Bonus Plan:

	Halsey	Rowan
Time saved (hrs.)	8	10
Bonus (Rs.)	$\left[\begin{array}{r}4 \mathrm{x} \\ {\left[\frac{8 \text { hrs } \times \text { Rs. } x}{2}\right.}\end{array}\right]$	

3. Total wages:

Workman A: $32 x+4 x=$ Rs. $36 x$ Workman $B: 30 x+7.5 x=$ Rs. $37.5 x \quad\}\{1 \mathrm{M}\}$
Statement of factory cost of the job

Workmen		A (Rs.)
Material cost (assumed)	Y (Rs.)	y
Wages (shown above)	$36 x$	37.5 x
Works overhead	240	225
Factory cost (given)	2,600	2,600

The above relations can be written as follows: $36 x+y+240=2,600$ (i) $37.5 x+y+225=2,600 \quad$ (ii)
Subtracting (i) from (ii) we get $1.5 x-15=0$
Or, $1.5 x=15$
Or, $x=$ Rs. 10 per hour
On substituting the value of x in (i) we get $y=$ Rs. 2,000
Hence the wage rate per hour is Rs. 10 and the cost of raw material is Rs.
2,000 on the job.

Answer 2:

(a) (a) Overhead Distribution Statement

	Production Departments		Service Departments	
	Machine Shops	Packing	General Plant	Stores
Allocated Overheads:	(Rs.)	(Rs.)	(Rs.)	(Rs.)
Indirect labour	8,000	6,000	4,000	11,000
Maintenance Material	1,400	1,600	2,100	2,800
Misc. supplies	--	2,900	--	16,000
Supervisor's salary	--	--	800	
Cost \& payroll salary	12,900	10,500	--	
Total allocated overheads	$1,03,000$	--		
Add: Apportioned Overheads (As per Schedule below)	$1,84,350$	70,125	22,775	73,150
	$1,97,250$	80,625	$1,25,775$	87,550

Schedule of Apportionment of Overheads

Item of Cost	Basis	Production Departments		Service Departments	
		Machine Shops (Rs.)	Packing (Rs.)	General Plant (Rs.)	Stores (Rs.)
Power	HP hours $(7: 1:-: 2)$	54,600	7,800	--	15,600
Rent	Floor space (5: 2:1:4)	30,000	12,000	6,000	24,000
Fuel \& Heat	Radiator sec. $(3: 6: 2: 4)$	12,000	24,000	8,000	16,000
Insurance	Investment	7,500	2,250	750	1,500

	$(10: 3: 1: 2)$				
Taxes	Investment $(10: 3: 1: 2)$	5,250	1,575	525	1,050
Depreciation	Investment $(10: 3: 1: 2)$	75,000	22,500	7,500	15,000
		$1,84,350$	70,125	22,775	73,150

(b) Re-distribution of Overheads of Service Departments to Production Departments:
Let, the total overheads of General Plant = ' a ' and the total overheads of Stores $=$ ' ${ }^{\prime}$ '
$a=1,25,775+0.3 b$
$b=87,550+0.2 a$
Putting the value of ' b ' in equation no. (i)
$a=1,25,775+0.3(87,550+0.2 a)$
Or a $=1,25,775+26,265+0.06 a$
Or 0.94a $=1,52,040 \quad$ Or $a=1,61,745$ (appx.)
Putting the value of $a=1,61,745$ in equation no. (ii) to get the value of 'b'
b $=87,550+0.2 \times 1,61,745=1,19,899$
Secondary Distribution Summary

Particulars	Total (Rs.)	Machine Shops (Rs.)	Packing (Rs.)
Allocated and Apportioned overheads as per Primary distribution	$2,77,875$	$1,97,250.00$	$80,625.00$
- General Plant	$1,61,745$	$80,872.50$	$48,523.50$
		$\left(1,61,745 \times \frac{5}{10}\right)$	$\left(1,61,745 \times \frac{3}{10}\right)$
- Stores	$1,19,899$	$59,949.50$ $(1,19,899 \times 50 \%)$	$23,979.80$ $(1,19,899 \times 20 \%)$
		$3,38,072.00$	$1,53,128.30$

Answer:

(b) (i) Calculation of Economic Order Quantity:
$\mathrm{EOQ}=\sqrt{\frac{2 \times A \times O}{C i}}=\sqrt{\frac{2 \times(60,000 \text { packs } \times 12 \text { months }) \times \text { Rs. } 240}{\text { Rs. } 228 \times 10 \%}}$
$=3,893.3$ packs or 3,893 packs.
(ii) Number of orders per year
$\frac{\text { Annual requirements }}{\text { E.O.Q }}=\frac{7,20,000 \text { packs }}{3,893 \text { packs }}=184.9$ or 185 orders a year $\}\{\mathbf{2 ~ M}\}$
(iii) Ordering and storage costs
Ordering and storage costs

	(Rs.)
Ordering costs : -185 orders \times Rs. 240	$44,400.00$
Storage cost :- $1 / 2(3,893$ packs $\times 10 \%$ of Rs. 228$)$	$44,380.20$
Total cost of ordering $\&$ storage	$88,780.20$

(iv) Timing of next order
(a) Day's requirement served by each order.

Number of days requirement $=\frac{\text { No. of working days }}{\text { No. of order in a year }}=\frac{360 \text { days }}{1850 \text { rders }}=1.94$ days
supply.

This implies that each order of 3,893 packs supplies for requirements of $\}$ 1.94 days only.
(b) Days requirement covered by inventory
$=\frac{\text { Units in inventory }}{\text { Economic order quantity }} \times$ (Day's requirement served by an order)
$\therefore \frac{10,033 \text { packs }}{3,893 \text { packs }} \times 1.94$ days $=5$ days requirment
(c) Time interval for placing next order

Inventory left for day's requirement - Average lead time of delivery 5 days -5 days $=0$ days
This means that next order for the replenishment of supplies has to be placed immediately.

Answer 3:

(a) (i) Calculation of Raw Material inputs during the month:

Quantities Entering Process	Litres	Quantities Leaving Process	Litres
Opening WIP	800	Transfer to Finished Goods	4,200
Raw material input (balancing figure)	5,360	Process Losses	1,800
		Closing WIP	160
	6,160		6,160

(ii) Calculation of Normal Loss and Abnormal Loss/Gain

(ii) Calculation of Normal Loss and Abnormal Loss/Gain	Litres
Total process losses for month	1,800
Normal Loss (10\% input)	536
Abnormal Loss (balancing figure)	1,264

(iii) Calculation of values of Raw Material, Labour and Overheads added to the process:

	Material	Labour	Overheads
Cost per equivalent unit	Rs. 23.00	Rs. 7.00	Rs. 9.00
Equivalent units (litre) (refer the working note)	4,824	4,952	5,016
Cost of equivalent units	Rs. 1,10,952	Rs. 34,664	Rs. 45,144
Add: Scrap value of normal loss (536 units \times Rs. 15)	Rs. 8,040	--	--
Total value added	Rs. 1,18,992	Rs. 34,664	Rs. 45,144

Workings:

Statement of Equivalent Units (litre):

Input Details	Units	Output details	Units	Equivalent Production					
				Material		Labour		Overheads	
				Units	(\%)	Units	(\%)	Units	(\%)
Opening WIP	800	Units completed:							
Units introduced	5,360	- Opening WIP	800	--	--	240	30	320	40
		- Fresh inputs	3,400	3,400	100	3,400	100	3,400	100
		Normal loss	536	--	--	--	--	--	
		Abnormal loss	1,264	1,264	100	1,264	100	1,264	100
		Closing WIP	160	160	100	48	30	32	20
	6,160		6,160	4,824		4,952		5,016	

(iv) Process Account for Month

	Litres	Amount (Rs.)		Litres	Amount (Rs.)
To Opening WIP	800	26,640	By Finished goods	4,200	$1,63,800$
To Raw Materials	5,360	$1,18,992$	By Normal loss	536	8,040
To Wages	--	34,664	By Abnormal loss	1,264	49,296
To Overheads	--	45,144	By Closing WIP	160	4,304
	6,160	$2,25,440$		6,160	$2,25,440$

Answer:

(b) In case of escalation clause in a contract, a contractor is paid for the any increase in price of materials and rate of labours which are beyond the control of the contractor. Any increase in the cost due to inefficiencies in usage of the materials and labours are not admissible. Thus any increase in cost due to usage in excess of standard quantity or hours arenot paid.
(i) Statement showing Additional claim due to Escalation clause.

Statement showing Final Contract Price

	(Rs.)	(Rs.)
Agreed contract price		$1,50,00,000$
Add: Agreed escalation claim:	$1,60,000$	
\quad Material Cost	$3,80,000$	$5,40,000$
Labour Cost		$1,55,40,000$
Final Contract Price	22 M \}	

(ii)

Contract Account

Answer 4:

(a) Material Price Variance $=$ Actual Quantity (Std. Price - Actual Price)
$X=12,500$ units (Rs. $40-$ Rs. 44) $=50,000(A)$
$Y=18,000$ units (Rs. $30-$ Rs. 28) $=36,000(F)$
$Z=88,500$ units (Rs. $10-$ Rs. 12) $=1,77,000(A)$
Material Usage Variance $=$ Std. Price (Std. Qty - Actual Qty.)

$$
\begin{aligned}
& \mathrm{X}=\text { Rs. } 40(6,000 \times 2-12,500)=20,000(\mathrm{~A}) \\
& \mathrm{Y}=\text { Rs. } 30(6,000 \times 3-18,000)=\mathrm{Nil} \\
& \mathrm{Z}=\text { Rs. } 10(6,000 \times 15-88,500)=15,000(\mathrm{~F}) 5,000(\mathrm{~A})
\end{aligned}
$$

$$
\text { Material Mix Variance }=\text { Std. Price (Revised Std. Qty. - Actual Qty.) }
$$

$X=\operatorname{Rs} .40\left(\frac{1,19,000 \times 2}{20}-12,500\right)=24,000(\mathrm{~A})$
$\mathrm{Y}=\operatorname{Rs} .30\left(\frac{1,19,000 \times 3}{20}-18,000\right)=4,500(\mathrm{~A})$
$Z=$ Rs. $10\left(\frac{1,19,000 \times 15}{20}-88,500\right)=\underline{7,500(F)}$ $21,000(A)$

Material Yield Variance $=$ Std. Price (Std. Qty. - Revised Std. Qty.)

Answer:

(b) (i) Preparation of Production Budget (in units)
$\left.\begin{array}{|l|r|r|r|r|}\hline & \text { October } & \text { November } & \text { December } & \text { January } \\ \hline \text { Demand for the month (Nos.) } & 40,000 & 35,000 & 45,000 & 60,000 \\ \hline \text { Add: } 20 \% \text { of next month's demand } & 7,000 & 9,000 & 12,000 & 13,000 \\ \hline \text { Less: Opening Stock } & (9,500) & (7,000) & (9,000) & (12,000) \\ \hline \text { Vehicles to be produced } & \mathbf{3 7 , 5 0 0} & \mathbf{3 7 , 0 0 0} & \mathbf{4 8 , 0 0 0} & \mathbf{6 1 , 0 0 0}\end{array}\right\}$
(ii) Preparation of Purchase budget forPart-X

	October	November	December
Production for the month (Nos.)	37,500	37,000	48,000
Add: 40\% of next month's production	$\begin{array}{r} 14,800 \\ \text { (40\% of } 37,000 \text {) } \end{array}$	$\begin{array}{r} 19,200 \\ (40 \% \text { of } 48,000) \end{array}$	$\begin{array}{r} 24,400 \\ (40 \% \text { of } 61,000) \end{array}$
	52,300	56,200	72,400
No. of units required for production	$\begin{array}{r} 2,09,200 \\ (52300 \times 4 \text { units }) \\ \hline \end{array}$	$\begin{array}{r} 2,24,800 \\ (56200 \times 4 \text { units }) \\ \hline \end{array}$	$\begin{array}{r} 2,89,600 \\ \hline(72,400 \times 4 \text { units }) \end{array}$
Less: Opening Stock	$(48,000)$	$\begin{array}{r} (59,200) \\ (14800 \times 4 \text { units }) \end{array}$	$\begin{array}{r} (76,800) \\ (19200 \times 4 \text { units }) \end{array}$
No. of units to be purchased	1,61,200	1,65,600	2,12,800

$$
\begin{aligned}
& X=R s .40\left(6,000 \times 2 \cdot \frac{1,19,000 \times 2}{20}\right)=4,000(F) \\
& Y=\operatorname{Rs} .30\left(6,000 \times 3-\frac{1,19,000 \times 3}{20}\right)=4,500(F) \\
& Z=\text { Rs. } 10\left(6,000 \times 15-\frac{1,19,000 \times 15}{20}\right)=7,500 \text { (F) } 16,000(F) \\
& \left.\begin{array}{rl}
\text { Labour Rate Variance } & =\text { Actual Hours (Std. Rate }- \text { Actual Rate) } \\
& =2,500 \text { hours (Rs. } 55-\text { Rs. } 58 \text {) }=7,500(A)
\end{array}\right\}\{1 \mathrm{M}\} \\
& \text { Labour Efficiency Variance }=\text { Std. Rate (Std. Hours - Actual Hours) } \\
& =\text { Rs. } 55(6,000 \times 3-17,500)=27,500(F)\}\{1 \mathrm{M}\}
\end{aligned}
$$

(iii) Budgeted Gross Profit for the Quarter October to December
$\left.\begin{array}{|l|r|r|r|r|}\hline & \text { October } & \text { November } & \text { December } & \text { Total } \\ \hline \text { Sales in nos. } & 40,000 & 35,000 & 45,000 & 1,20,000 \\ \hline \text { Net Selling Price per unit* } & 7,28,535 & 7,28,535 & 7,28,535 & \\ \hline \text { Sales Revenue (Rs. in lakh) } & 2,91,414 & 2,54,987.25 & 3,27,840.75 & 8,74,242 \\ \hline \begin{array}{l}\text { Less: Cost of Sales (Rs. in lakh) } \\ \text { (Sales unit } \times \text { Cost per unit) }\end{array} & 2,28,560 & 1,99,990.00 & 2,57,130.00 & 6,85,680 \\ \hline \text { Gross Profit (Rs. in lakh) } & \mathbf{6 2 , 8 5 4} & \mathbf{5 4 , 9 9 7 . 2 5} & \mathbf{7 0 , 7 1 0 . 7 5} & \mathbf{1 , 8 8 , 5 6 2}\end{array}\right\} 1 \mathbf{M}$ Each $\}$

* Net Selling price unit $=$ Rs. 8,57,100-15\% commission on Rs. 8,57,100
$=$ Rs. $7,28,535$.

Answer 5:

(ii) Statement reconciling the profit as per costing profit and loss account with the profit as per financial accounts

Particulars	Amount (Rs.)	Amount (Rs.)	$\underbrace{\{1 \mathrm{M} \text { Each }\}}_{\{3 / 4 \mathrm{M}\}}$
Profit as per cost records		2,92,875	
Add: Overheads over-absorbed:			
- Works overheads (Rs. 4,31,600 - Rs. 4,26,000)	5,600		
- Administration OH (Rs. 1,60,000 - Rs. 1,50,000)	10,000		
- Selling and Distribution (Rs. 1,80,000 - Rs. 1,65,000)	15,000	30,600	
```Less: Closing stock overvalued (Rs. 1,68,475 - Rs 1,67,500)```		(975)	
Profit as per financial accounts		3,22,500	

*It is assumed that the number of units Produced
$=$ Number of units sold + Finished stock $=30,000+2,000=32,000$ units.

## Answer:

(b) (i) Calculation of cost driver rate:

Cost pool	Budgeted overheads   (Rs.)	Cost driver	Cost driver   rate (Rs.)
Material procurement	$18,42,000$	1,200	$1,535.00$
Material handling	$8,50,000$	1,240	685.48
Maintenance	$24,56,000$	17,550	139.94


Set-up	$9,12,000$	1,450	628.97
Quality control	$4,42,000$	1,820	242.86

(ii) Calculation of cost for the batch:

Particulars	Amount   (Rs.)	Amount   (Rs.)
Material cost		$24,62,000.00$
Wages		$4,68,500.00$
Overheads:	$85,960.00$	
- Material procurement (Rs. 1,535 $\times 56$ orders)	$57,580.32$	
- Material handling (Rs. 685.48 $\times 84$ movements)	$1,98,714.80$	
- Maintenance (Rs. 139.94 $\times 1,420$ hours)	$37,738.20$	
- Set-up (Rs. 628.97 $\times 60$ set-ups)	$4,371.48$	$3,84,364.80$
- Quality control (Rs. 242.86 $\times 18$ inspections)		$33,14,864.80$
Total Cost		7,600
No. of units		436.17
Cost per units		

## Answer 6:

(a) To exercise control over cost, following steps are followed:
(i) Determination of pre-determined standard or results: Standard cost or performance targets for a cost object or a cost centre is set before initiation of production or service activity. These are desired cost or result that need to be achieved.
(ii) Measurement of actual performance: Actual cost or result of the cost object or cost centre is measured. Performance should be measured in the same manner in which the targets are set i.e. if the targets are set up operation-wise, and then the actual costs should also be collected and measured operation-wise to have a common basis for comparison.
(iii) Comparison of actual performance with set standard or target: The actual performance so measured is compared against the set standard and desired target. Any deviation (variance) between the two is noted and reported to the appropriate person or authority.
(iv) Analysis of variance and action: The variance in results so noted are further analysed to know the reasons for variance and appropriate action is taken to ensure compliance in future. If necessary, the standards are further amended to take developments into account.

## Answer:

(b)

	Bill of Materials		Material Requisition Note
1.	It is the document prepared by the   engineering or planning department.	1.	It is prepared by the production   or other consuming department.
2.	It is a complete schedule of   component parts and raw materials   required for a particular job or work   order.	2.	It is a document authorizing   Store- keeper to issue materials   to the consuming department.
3.	It often serves the purpose of a   material requisition as it shows the   complete schedule of materials   required for a particular job i.e. it   can replace material requisition.	.	It cannot replace a bill of   materials.
4.	It can be used for the purpose of   quotations.	4.	It is useful in arriving historical   cost only.
5.	It helps in keeping a quantitative   control on materials drawn through   material requisition.	5.	It shows the material actually   drawn from stores.

## Answer:

(c) Financial expenses causing differences in Financial and Cost Accounts:
(i) Interest on loans or bank mortgages.
(ii) Expenses and discounts on issue of shares, debentures etc.
(iii) Other capital losses i.e., loss by fire not covered by insurance etc.
\{Any $5=5$
(iv) Losses on the sales of fixed assets and investments.
(v) Goodwill written off.
(vi) Preliminary expenses written off.
(vii) Income tax, donations, subscriptions.
(viii) Expenses of the company's share transfer office, if any.

## Answer:

(d) Standing Charges: These are the fixed costs that remain constant irrespective of the distance travelled. These costs include the following-

- Insurance
- License fees
- Salary to Driver, Conductor, Cleaners, etc. if paid on monthly basis
- Garage costs, including garage rent
- Depreciation (if related to efflux of time)
- Taxes
- Administration expenses, etc.

Running Charges: These costs are generally associated with the distance travelled. $\}\{\mathbf{1} \mathbf{M}\}$ These costs include the following-

- Petrol and Diesel
- Lubricant oils,
- Wages to Driver, Conductor, Cleaners, etc. if it is related to operations
- Depreciation (if related to activity)
\{1/2 M Each $\}$
- Any other variable costs identified.

