## (CA ALL INTERMEDIATE BATCHES) <br> DATE: 31.12.2020 <br> MAXIMUM MARKS: 100 <br> TIMING: 3¼ Hours

## PAPER : COSTING

Answer to questions are to be given only in English except in the case of candidates who have opted for Hindi Medium. If a candidate who has not opted for Hindi Medium. His/her answer in Hindi will not be valued.

Question No. 1 is compulsory.
Candidates are also required to answer any Four questions from the remaining Five Questions.
In case, any candidate answers extra question(s)/sub-question(s) over and above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.
Wherever necessary, suitable assumptions may be made and disclosed by way of note.

## Answer 1:

(a) Break-even sales $=\frac{\text { FixedCost }}{\text { P/VRatio }}$

$$
\text { PN Ratio }=\frac{\text { ChangeinProfit }}{\text { ChangeinSales }} \times 100 \text { or, } \frac{\text { Rs. } 37,50,000}{\text { Rs. } 7,80,60,000-\text { Rs. } 5,93,10,000} \times 100
$$

$$
\text { Or, } \frac{\text { Rs. } 37,50,000}{\text { Rs. } 1,87,50,000} \times 100 \text { of, } 20 \%
$$

$$
\text { Break-even sales } \left.\quad=\frac{\mathrm{Rs} .98,50,000}{20 \%}=\text { Rs. } 4,92,50,000\right\}\left\{\mathbf{1}^{1 / 2} \mathbf{~ M}\right\}
$$

Profit/ loss $\quad=$ Contribution - Fixed Cost

$$
\begin{aligned}
& =\text { Rs. } 8,20,00,000 \times 20 \%-\text { Rs. } 98,50,000 \\
& =\text { Rs. } 1,64,00,000-\text { Rs. } 98,50,000=\text { Rs. } 65,50,000\}\left\{1^{1 / 2} \mathrm{M}\right\}
\end{aligned}
$$

(ii) To earn same amount of profit in $20 \times 8-\times 9$ as was in $20 \times 7-\times 8$, it has to earn the same amount of contribution as in 20X7-X8.
Sales - Variable cost $=$ Contribution equal to $20 \times 7-\times 8$ contribution
Contribution in 20X7-X8 = Sales in 20X7-X8 $\times$ P/V Ratio in 20X7-X8

$$
=\text { Rs. } 5,93,10,000 \times 20 \%=\text { Rs. } 1,18,62,000
$$

Let the number of units to be sold in $20 \times 8-X 9=X$
Sales in 20X8-X9 - Variable cost in 20X8-X9 = Desired Contribution
$90 \mathrm{X}-80 \mathrm{X}=$ Rs. $1,18,62,000$
Or, 10 X=1,18,62,000
Or, $X=11,86,200$ units
Therefore, Sales amount required to earn a profit equals to 20X7-X8 profit
$=$ Rs. $90 \times 11,86,200$ units $=$ Rs. $10,67,58,000 \quad\}\{2 \mathrm{M}\}$

## Answer:

(b)
(i)

Calculation of total cost for 'Professionals Protect Plus' policy

|  | Particulars | Amount (Rs.) | Amount (Rs.) |
| :---: | :---: | ---: | ---: |
| 1. | Marketing and Sales support: |  |  |
|  | - Policy development cost | $11,25,000$ |  |
|  | - Cost of marketing | $45,20,000$ |  |
|  | - Sales support expenses | $11,45,000$ | $67,90,000$ |
| 2. | Operations: |  |  |
|  | $-\quad$ Policy issuance cost | $10,05,900$ |  |


|  | Policy servicing cost | 35,20,700 |  | \{3/4 M \} <br> \{1/4 M \} |
| :---: | :---: | :---: | :---: | :---: |
|  | Claims management cost | 1,25,600 | 46,52,200 |  |
| 3. | IT Cost |  | 74,32,000 |  |
| 4. | Support functions |  |  |  |
|  | - Postage and logistics | 10,25,000 |  |  |
|  | Facilities cost | 15,24,000 |  |  |
|  | - Employees cost | 5,60,000 |  |  |
|  | - Office administration cost | 16,20,400 | 47,29,400 | \{1/4 M $\}$ |
|  | Total Cost |  | 2,36,03,600 | \{1 M |

(ii) Calculation of cost per policy $\left.\left.=\frac{\text { Total cost }}{\text { No.of policies }}=\frac{₹ 2,36,03,600}{528}=₹ 44,703.79\right\} \mathbf{~} \mathbf{~ M}\right\}$
(iii) Cost per rupee of insured value $=\frac{\text { Total cost }}{\text { Total insured value }}=\frac{₹ 2.36 \text { crore }}{₹ 1,320 \text { crore }}=₹ 0.0018 \mathbf{\{ 1 ~ M \}}$

## Answer:

(c)

Production Statement
For the year ended 31 ${ }^{\text {st }}$ March, 2018

|  |  | Amount (Rs.) | \{ $\left\{1^{1 / 2} \mathrm{M}\right\}$ |
| :---: | :---: | :---: | :---: |
| Direct materials |  | 9,00,000 |  |
| Direct wages |  | 7,50,000 |  |
|  | Prime Cost | 16,50,000 |  |
| Factory overheads |  | 4,50,000 |  |
|  | Cost f Production | 21,00,000 | (1 M $\}$ |
| Administration overheads |  | 4,20,000 |  |
| Selling and distribution overheads |  | 5,25,000 |  |
|  | Cost of Sales | 30,45,000 | $\left\{1^{1 / 2} \mathrm{M}\right\}$ |
| Profit |  | 6,09,000 |  |
|  | Sales value | 36,54,000 | \}1 M \} |

## Answer:

(d) Employee turnover rate using:
(i) Separation Method:
$=\frac{\text { No. of workers left }+ \text { No. of workers discharged }}{\text { Average number of workers }} \times 100$
$\left.\left.=\frac{(40+120)}{(3,600+3,790) / 2} \times 100=\frac{160}{3,695} \times 100=4.33 \%\right\} 1 \mathrm{M}\right\}$
(ii) Replacement Method:
$\left.\left.=\frac{\text { No. of workers replaced }}{\text { Average number of workers }} \times 100=\frac{150}{3,695} \times 100=4.06 \%\right\} 1 \mathrm{M}\right\}$
(iii) New Recruitment Method:
$=\frac{\text { No. of workers newly recruited }}{\text { Average number of worker } \mathbf{s}} \times 100$
$\xlongequal{\text { No. Recruitments }- \text { No. of Replacements }} \times 100$

$$
\left.\left.=\frac{350-150}{3,695} \times 100=\frac{200}{3,695} \times 100=5.41 \%\right\} 1 \mathrm{M}\right\}
$$

(iv) Flux Method:
$=$ No. of separations + No. of accessions $\times 100$
Average number of worker $\mathbf{s}$

$$
\left.=\frac{(160+350)}{(3,600+3,790) / 2} \times 100=\frac{510}{3,695} \times 100=13.80 \%\right\}\{2 \mathrm{M}\}
$$

## Answer 2:

(a) (i) Statement of Equivalent Production (Average cost method)

| (a) (i) | Statement of Equiv |  | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input (Units) | Particulars | Output Units |  |  |  |  |  |  |
|  |  |  | Materials |  | Labour |  | Overheads |  |
|  |  |  | (\%*) | Units** | (\% )* | Units** | (\%)* | Units** |
| 20,000 | Completed | 14,000 | 100 | 14,000 | 100 | 14,000 | 100 | 14,000 |
|  | WIP | 6,000 | 100 | 6,000 | 33-1/3 | 2,000 | 33-1/3 | 2,000 |
| 20,000 |  | 20,000 |  | 20,000 | \} 11 M$\}$ | 16,000 | \} 1 M \} | 16,000 |

*Percentage of completion
** Equivalent units
(ii) Statement showing Cost for each element

| Particulars |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Cost of opening work-in- progress (Rs.) | $6,00,000$ | $1,00,000$ | $1,00,000$ | $8,00,000$ |
| Cost incurred during the month (Rs.) | $25,60,000$ | $15,00,000$ | $15,00,000$ | $55,60,000$ |
| Total cost (Rs.) : (A) | $31,60,000$ | $16,00,000$ | $16,00,000$ | $63,60,000$ |
| Equivalent units : (B) | 20,000 | 16,000 | 16,000 |  |
| Cost per equivalent unit (Rs.) : C=(A $\div$ B) | $\{1 \mathrm{M}\}$ | 158 | $\{1 \mathrm{M}\}$ | 100 |
| $\{1 \mathrm{M}\}$ | 100 | 358 |  |  |

(iii) Statement of Apportionment of cost

|  | (Rs.) | (Rs.) |
| :--- | ---: | ---: |
| Value of output transferred: $(A)(14,000$ units $\times$ Rs. 358) |  | $50,12,000\{1 \mathrm{M}\}$ |
| Value of closing work-in-progress: $(\mathrm{B})$ |  |  |
| Material $(6,000$ units $\times$ Rs.158 $)$ | $9,48,000$ |  |
| Labour $(2,000$ units $\times$ Rs. 100$)$ | $2,00,000$ |  |
| Overhead $(2,000$ units $\times$ Rs. 100$)$ | $2,00,000$ | $13,48,000$ |$\{1 \mathrm{M}\}$

(iv) Process- A Account

| Particulars | Units | (Rs.) | Particulars | Units | (Rs.) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| To Opening WIP | 4,000 | 8,00,000 | By Completed units | 14,000 | 50,12,000 |
| To Materials | 16,000 | 25,60,000 | By Closing WIP | 6,000 | 13,48,000 |
| To Labour |  | 15,00,000 |  |  |  |
| To Overhead |  | 15,00,000 |  |  |  |
|  | 20,000 | 63,60,000 | \{1 M \} | 20,000 | 63,60,000 |

## Answer:

## (b) Working Notes:

(i) Computation of Annual consumption \&Annual Demand for raw material 'Dee':

| Sales forecast of the product 'Exe' | 20,000 units |
| :--- | ---: |
| Less: Opening stock of 'Exe' | 1,800 units |
| Fresh units of 'Exe' to be produced | 18,200 units |
| Raw material required to produce 18,200 units of 'Exe' | $36,400 \mathrm{~kg}$. |
| $(18,200$ units $\times 2 \mathrm{~kg}$.) | $2,000 \mathrm{~kg}$. |
| Less: Opening Stock of 'Dee' | $34,400 \mathrm{~kg} .\{1 \mathrm{M}\}$ |
| Annual demand for raw material 'Dee' |  |

(ii) Computation of Economic Order Quantity (EOQ):

EOQ $\quad=\sqrt{\frac{2 x \text { Annualdemandof Dee }{ }^{*} \text { Orderingoost }}{\text { Carryingoost per unit per annum }}}$
$\left.=\sqrt{\frac{2 \times 17.200 \mathrm{~kg} \times 2720}{2125 \times 13.76 \%}}=\sqrt{\frac{2 \times 17.200 \mathrm{~kg} \times \% 720}{217.2}}-1.200 \mathrm{~kg}\right\}\{2 \mathrm{M}\}$
(iii) Re-Orier level:

- (Maximum consumption per day $\times$ Maximum lead time)
$=\left\{\left(\frac{\text { Annual Consumptionof }{ }^{*} \text { De日 }}{}{ }^{*}+20 \mathrm{~kg}-\right) \times 8\right.$ days $\}$
$=\left\{\left(\frac{18,200 \mathrm{~kg}}{364 \text { days }}+20 \mathrm{~kg}\right) \times 8\right.$ days $\left.\}=560 \mathrm{~kg} \cdot\right\}\{2 \mathrm{M}\}$
(iv) Minimum consumption per day of raw material 'Dee':

Average Consumption per day $\quad=50 \mathrm{Kg}$.
Hence, Maximum Consumption per day $=50 \mathrm{~kg} .+20 \mathrm{~kg} .=70 \mathrm{~kg}$.
So Minimum consumption per day will be
Average Consumption $=\frac{\text { Min. consumption }+ \text { Max. consumption }}{2}$
Or, 50 kg .

$$
=\frac{\text { Min.consumption }+70 \mathrm{~kg}}{2}
$$

Or, Min. consumption $=100 \mathrm{~kg}-70 \mathrm{~kg} . \quad=30 \mathrm{~kg}$.
(a) Re-order Quantity :

EOQ - 200 kg . $=1,200 \mathrm{~kg} .-200 \mathrm{~kg} .=1,000 \mathrm{~kg} \cdot\{1 \mathrm{M}\}$
(b) Maximum Stock level:
$=$ Re-order level + Re-order Quantity - (Min. consumption per day $\times$ Min. lead time)
$=560 \mathrm{~kg} .+1,000 \mathrm{~kg} .-(30 \mathrm{~kg} . \times 4$ days $)$
$=1,560 \mathrm{~kg} .-120 \mathrm{~kg} .=1,440 \mathrm{~kg} \cdot\{1 \mathrm{M}\}$
(c) Minimum Stock level:
$=$ Re-order level - (Average consumption per day $\times$ Average lead time)
$=560 \mathrm{~kg} .-(50 \mathrm{~kg} . \times 6$ days $)=260 \mathrm{~kg} .\{1 \mathrm{M}\}$
(d) Impact on the profitability of the company by not ordering the EOQ.

|  |  | When purchasing the ROQ | When purchasing the EOQ |
| :---: | :---: | :---: | :---: |
| I | Order quantity | $1,000 \mathrm{~kg}$. | $1,200 \mathrm{~kg}$. |
| II | No. of orders a year | $\frac{17,200 \mathrm{~kg} .}{1,000 \mathrm{~kg} .}=17.2 \text { or } 18 \text { orders }$ | $\frac{17,200 \mathrm{~kg}}{1,200 \mathrm{~kg} .}=14.33 \text { or } 15 \text { orders }$ |
| III | Ordering Cost | $\begin{aligned} & 18 \text { order } \times \text { Rs. } 720=\text { Rs } \\ & 12,960 \end{aligned}$ | $\begin{aligned} & 15 \text { orders } \times \text { Rs. } 720=\text { Rs. } \\ & 10,800 \end{aligned}$ |
| IV | Average Inventory | $\frac{1,000 \mathrm{~kg} .}{2}=500 \mathrm{~kg} .$ | $\frac{1,200 \mathrm{~kg} .}{2}=600 \mathrm{~kg} .$ |
| v | Carrying Cost | $\begin{aligned} & 500 \mathrm{~kg} . \times \text { Rs. } 17.2=\text { Rs. } \\ & 8,600 \end{aligned}$ | $\begin{aligned} & 600 \mathrm{~kg} . \times \text { Rs. } 17.2=\text { Rs. } \\ & 10,320 \end{aligned}$ |
| VI | Total Cost | Rs. 21,560 | Rs. 21,120 |

Extra Cost incurred due to not ordering EOQ = Rs. 21,560-Rs. $21,120=$ Rs. 440 \{2 M

## Answer 3:

## (a) Costing books

Stores Control Account

| Particulars | (Rs.) | Particulars | (Rs.) |
| :--- | ---: | ---: | ---: |
| To Balance b/d | 32,000 | By W.I.P. Control A/c | $1,60,000$ |
| To General ledger adjustment A/c | $1,58,000$ | By Work overhead control A/c | 20,000 |
| To Work in progress control A/c | 80,000 | By Costing Profit and Loss A/c | 6,000 |
|  |  | By Balance c/d | 84,000 |
|  | $2,70,000$ |  | $2,70,000$ |

W.I.P. Control Account

| Particulars | (Rs.) | Particulars | (Rs.) |
| :--- | ---: | ---: | ---: |
| To Balance b/d | 60,000 | By Stores control A/c | 80,000 |
| To Stores control A/c | $1,60,000$ | By Costing profit and loss A/c <br> (Cost of sales) | $4,00,000$ |
| To Direct wages control A/c | 65,000 |  |  |
| To Works overhead control A/c | $2,40,000$ | By Balance c/d | 45,000 |
|  | $5,25,000$ |  | $5,25,000$ |

## Works Overhead Control Account

| Particulars |  | (Rs.) | Particulars |
| :--- | ---: | :--- | ---: |
| (Rs.) |  |  |  |
| To General ledger adjustment A/c | $2,50,000$ | By W.I.P. Control A/c | $2,40,000$ |
| To Store ledger control A/c | 20,000 | By Costing profit \& loss <br> A/C (under recovery) | 30,000 |
|  | $2,70,000$ |  | $2,70,000$ |

Costing Profit \& Loss Account

| Particulars | (Rs.) | Particulars | (Rs.) |  |
| :--- | ---: | :--- | ---: | :---: |
| To W.I.P. control A/c <br> (Cost of sales) | $4,00,000$ | By General ledger adjustment <br> A/c |  |  |
| To Works overhead control A/c | 30,000 | Cost of sales | $4,00,000$ |  |
| To Stores control A/c (shortage) | 6,000 | $10 \%$ profit | $\underline{40,000}$ | $4,40,000$ |
| To Profit | 4,000 |  | $4,40,000$ |  |

## (a) Financial Books

Profit \& Loss Account


Reconciliation statement

|  | (Rs.) | (Rs.) |
| :--- | ---: | ---: |
| Profit as per Cost Accounts |  | 4,000 |
| Add: Income from investment recorded in Financial accounts |  | 10,000 |
|  |  | 14,000 |
| Less: Under absorption of wages in Cost accounts | $\{\mathbf{2 ~ M}\}$ |  |
| Loss on sales of capital asset only included in Financial accounts | 20,000 |  |
| Loss as per Financial accounts |  | $\mathbf{2 5 , 0 0 0}$ |

## Answer:

## (b) Working Notes:

(a) Calculation of number of Patient days
$\left.\begin{array}{|r|r|}\hline 35 \text { Beds } \times 150 \text { days } & =5,250 \\ \hline 25 \text { Beds } \times 80 \text { days } & =2,000 \\ \hline \text { Extra beds } & =750 \\ \hline \text { Total } & =8,000\end{array}\right\}\{\mathbf{1 / 2 \mathbf { M } \}}$

Statement of Profitability

| Particulars | Amount | Amount |
| :---: | :---: | :---: |
| Income for the year (Rs. 2,000 per patient per day $\times$ 8,000 patient days) |  | 1,60,00,000 |
| Less : Variable Costs : |  |  |
| Doctor Fees (Rs. 2,50,000 per month $\times 12$ ) | 30,00,000 |  |
| Food to Patients (Variable) | 8,80,000 |  |
| Other services to patients (Variable) | 3,00,000 |  |
| Laundry charges (Variable) - (Rs.) | 6,00,000 |  |
| Medicines (Variable) - (Rs.) | 7,50,000 |  |
| Bed Hire Charges (Rs. $100 \times 750$ Beds) | 75,000 |  |
| Total Variable costs |  | 56,05,000 |
| Contribution |  | 1,03,95,000 |
| Less : Fixed Costs : |  |  |
| Rent (Rs. 75,000 per month $\times 12$ ) | 9,00,000 |  |
| Supervisor ( 2 persons $\times$ Rs. $25,000 \times 12$ ) | 6,00,000 |  |
| Nurses (4 persons $\times$ Rs. 20,000 $\times 12$ ) | 9,60,000 |  |
| Ward Boys (4 persons $\times$ Rs. 5,000 $\times 12$ ) | 2,40,000 |  |
| Repairs (Fixed) | 81,000 |  |
| Other fixed expenses - (Rs.) | 10,80,000 |  |
| Administration expenses allocated - (Rs.) | 10,00,000 |  |
| Total Fixed Costs |  | 48,61,000 |
| Profit |  | 55,34,000 |

(1) Calculation of Contribution per Patient day

Total Contribution - Rs. 1,03,95,000
Total Patient days - 8,000
Contribution per Patient day - Rs. 1,03,95,000 / 8,000 = Rs. 1,299.375 \}1/2 M\}
Breakeven Point $=$ Fixed Cost $/$ Contribution per Patient day

$$
\begin{aligned}
& =\text { Rs. } 48,61,000 / \text { Rs. } 1,299.375 \\
& =3,741 \text { patient days }\}\{\mathbf{1} \mathbf{~}\}
\end{aligned}
$$

Answer 4:
(a) (i) Material Price Variance = Actual Quantity (Std. Price - Actual Price)

| Limestone | $=$ | $340\left(\text { Rs. } 565-\frac{\text { Rs. } 1,90,400}{340}\right)$ |  |
| :---: | :---: | :---: | :---: |
|  | $=$ | 340 (Rs. 565 -Rs. 560) | $=1,700$ (F) $\}\{1 / 2 \mathrm{M}\}$ |
| Silica | = | 105 (Rs. $4,800-\frac{\text { Rs.5,09,250 }}{105}$ ) |  |
|  | $=$ | 105 (Rs. 4,800-Rs. 4,850) | $=5,250$ (A) $\}\{1 / 2 \mathrm{M}\}$ |
| Aumina | F | $25\left(\right.$ Rs. $\left.32,100-\frac{R s .8,12,500}{25}\right)$ |  |
|  | $=$ | 25 (Rs. 32,100-Rs. 32,500) | $=10,000$ (A) $\}\{1 / 2 \mathrm{M}\}$ |
| Iron ore | $=$ | $30\left(\text { Rs. } 1,800-\frac{\text { Rs. } 53,400}{30}\right)$ |  |
|  | $=$ | 30 (Rs. 1,800-Rs. 1,780) | $=600(\mathrm{~F})\}\{1 / 2 \mathrm{M}\}$ |
| Others | $=$ | $23\left(\mathrm{Rs} .2,400-\frac{\mathrm{Rs} .51,750}{23}\right)$ |  |
|  | $=$ | 23 (Rs. 2,400-Rs. 2,250) | $=3,450(\mathrm{~F})\}\{1 / 2 \mathrm{M}\}$ |
|  |  |  | 9,500 (A) |

(ii) Material Mix Variance $=$ Std. Price (Revised Std. Quantity - Actual Quantity)

| Limestone | Rs. 565 (523 $\times 65 \%-340$ ) |  |
| :---: | :---: | :---: |
|  | Rs. 565 (339.95-340) | $=28.25$ (A) $\} 1 / 2 \mathrm{M}\}$ |
| Silica | Rs. 4,800 (523 $\times 20 \%-105$ ) |  |
|  | Rs. 4,800 (104.6-105) | $=1,920$ (A) $\} 1 / 2 \mathrm{M}\}$ |
| Alumina | $=\quad$ Rs. 32,100 ( $523 \times 5 \%-25$ ) |  |
|  | $=\quad$ Rs. 32,100 (26.15-25) | $=36,915$ (F) $\{1 / \mathbf{2} \mathbf{~ M ~}$ |
| Iron ore | $=\quad$ Rs. $1,800(523 \times 5 \%-30)$ |  |
|  | Rs. 1,800 (26.15-30) | $=6,930$ (A) $\{1 / 2 \mathrm{M}\}$ |
| Others | $=\quad$ Rs. $2,400(523 \times 5 \%-23)$ |  |
|  | $=\quad$ Rs. 2,400 (26.15-23) | = 7,560 (F) $\{1 / 2 \mathrm{M}\}$ |
|  |  | 35,596.75 (F) |

(iii) Material Yield Variance=Std. Price(Standard Quantity- Revised Std. Quantity)

| Limestone | $\begin{aligned} & \text { Rs. } 565(500 \times 65 \%-523 \times 65 \%) \\ & \text { Rs. } 565(325-339.95) \end{aligned}$ | $=8,446.75$ (A) $\} 1 / 2 \mathrm{M}\}$ |
| :---: | :---: | :---: |
| Silica | Rs. 4,800 ( $500 \times 20 \%-523 \times 20 \%$ ) |  |
|  | Rs. 4,800 (100-104.6) | $=22,080$ (A) $\{1 / 2 \mathrm{M}\}$ |
| Alumina | Rs. $32,100(500 \times 5 \%-523 \times 5 \%)$ |  |
|  | Rs. 32,100 (25-26.15) | $=36,915$ (A) $\} 1 / \mathbf{2} \mathbf{M}\}$ |
| Iron ore | Rs. 1,800 ( $500 \times 5 \%-523 \times 5 \%$ ) |  |
|  | Rs. 1,800 (25-26.15) | $=2,070$ (A) $\} 1 / 2 \mathrm{M}\}$ |
| Others | Rs. $2,400(500 \times 5 \%-523 \times 5 \%)$ |  |
|  | Rs. 2,400 (25-26.15) | $\frac{=2,760(\mathrm{~A})}{72,271.75(\mathrm{~A})}\{1 / 2 \mathrm{M}\}$ |

(iv) Material Cost Variance $=$ (Std. Quantity $\times$ Std. Price) - (Actual Quantity $\times$ Actual Price)


## Answer:

(b)

Dr. Contract Account for the year ended 31st March, $2019 \quad$ Cr.

| Particulars | HP-1 (Rs.) | HP-2 (Rs.) | Particulars | HP-1 (Rs.) | HP-2 (Rs.) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| To Balance b/d: W-I-P | $7,80,000$ | $2,80,000$ | By Closing <br> material at <br> site | 47,000 | 52,000 |
| To Material purchased | $6,20,000$ | $8,10,000$ | By W-I-P: |  |  |
| To Wages: <br> (Rs. 85,000 +Rs. 12,000) <br> (Rs. 62,000 + Rs. 8,400) | 97,000 | 70,400 | Value of work <br> certified | $20,50,000$ | $16,10,000$ |
|  |  |  | Cost of work <br> not certified | $1,90,000$ | $1,40,000$ |
| To Donation to local club* | 5,000 | 2,500 |  |  |  |
| To Plant hire charges: <br> (Rs. 72,000 x 1/3) <br> (Rs. 57,000 x 1/3) | 24,000 | 19,000 |  |  |  |
| To Depreciation on concrete <br> mixture**: |  |  |  |  |  |


| Rs. 8,20,000× $15 \% \times 180 / 365)$ <br> (Rs. 8,20,000 $\times 15 \% \times 100 / 365)$ | 60,658 | 33,699 |  |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- |
| To Notional profit | $7,00,342$ | $5,86,401$ |  |  |  |
|  | $22,87,000$ | $18,02,000$ |  | $22,87,000$ | $18,02,000$ |

* Assuming donation paid to local club was exclusively for the above projects, hence included in the contract account.
** Depreciation on concrete mixture machine is charged on the basis of number of days used for the projects, as it is clearly mentioned in the question that this machine can be used for other projects also.
(Land purchased and brokerage and registration fee paid for this purpose cannot be charged to contract account, hence not included in the contract account)


## Answer 5:

(a) (i) Flexible Budget before marketing efforts:

(ii) Flexible Budget after marketing efforts:

|  | Product A (Rs.) |  | Product B (Rs.) |  |
| :--- | ---: | ---: | ---: | ---: |
|  | $\mathbf{7 , 5 0 0}$ units |  | $\mathbf{9 , 5 0 0}$ units |  |
|  | Per unit | Total | Per unit | Total |
| Sales | 120.00 | $\mathbf{9 , 0 0 , 0 0 0}$ | 78.00 | $\mathbf{7 , 4 1 , 0 0 0}$ |
| Raw material cost | $\mathbf{6 0 . 0 0}$ | $\mathbf{4 , 5 0 , 0 0 0}$ | $\mathbf{4 2 . 0 0}$ | $\mathbf{3 , 9 9 , 0 0 0}$ |
| Direct labour cost per unit | $\mathbf{3 0 . 0 0}$ | $\mathbf{2 , 2 5 , 0 0 0}$ | $\mathbf{1 8 . 0 0}$ | $\mathbf{1 , 7 1 , 0 0 0}$ |
| Variable overhead per unit | $\mathbf{1 3 . 2 0}$ | $\mathbf{9 9 , 0 0 0}$ | $\mathbf{6 . 6 0}$ | $\mathbf{6 2 , 7 0 0}$ |
| Fixed overhead per unit | $\mathbf{6 . 7 2}$ | $\mathbf{5 0 , 4 0 0}$ | $\mathbf{3 . 9 8}$ | $\mathbf{3 7 , 8 0 0}$ |
| Total cost | $\mathbf{1 0 9 . 9 2}$ | $\mathbf{8 , 2 4 , 4 0 0}$ | $\mathbf{7 0 . 5 8}$ | $\mathbf{6 , 7 0 , 5 0 0}$ |
| Profit | $\mathbf{1 0 . 0 8}$ | $\mathbf{7 5 , 6 0 0}$ | $\mathbf{7 . 4 2}$ | $\mathbf{7 0 , 5 0 0}$ |

## Answer:

(b) Hours worked by Mr.Z = No. of normal days worked + Overtime + holiday/ Sunday worked
$=(21$ days $\times 7.5$ hours $)+(9.5$ hours +8.5 hours $)+(5$ hours +6 hours $)$
$=157.5$ hours +18 hours +11 hours $=186.50$ hours. $\{1 \mathrm{M}\}$

## (i) Calculation of earnings per day

| Caiculation of earnings per day |  |
| :--- | ---: |
| Particulars | Amount (Rs.) |
| Basic salary (Rs. $1,000 \times 26$ days) | $\mathbf{2 6 , 0 0 0}$ |
| Dearness allowance $(20 \%$ of basic salary) | $\mathbf{5 , 2 0 0}$ |
| House rent allowance $(16 \%$ of basic salary) | 31,200 |
| Employer's contribution to Provident fund $(12 \% \times$ Rs. 31,200) | $\mathbf{4 , 1 6 0}$ |
| Employer's contribution to Pension fund $(7 \% \times$ Rs. 31,200$)$ | $\mathbf{3 , 7 4 4}$ |
|  | 41,288 |
| No. of working days in a month (days) | 26 |
| Rate per day | $\mathbf{1 , 5 8 8}$ |
| Transport allowance per day | 50 |
| Earnings per day | $\mathbf{1 , 6 3 8}$ |

(ii) Calculation of effective wage rate per hour of Mr. Z:

| Particulars | Amount (Rs.) |
| :--- | ---: |
| Basic salary (Rs. $1,000 \times 26$ days) | $\mathbf{2 6 , 0 0 0}$ |
| Additional basic salary for Sunday $\&$ holiday (Rs. $1,000 \times 2$ <br> days) | $\mathbf{2 , 0 0 0}$ |
| Dearness allowance ( $20 \%$ of basic salary) | $\mathbf{5 , 6 0 0}$ |
|  | 33,600 |
| House rent allowance (16\% of basic salary) | $\mathbf{4 , 4 8 0}$ |
| Transport allowance (Rs. $50 \times 23$ days) | $\mathbf{1 , 1 5 0}$ |
| Overtime allowance (Rs. $160 \times 2 \times 2$ hours)* | $\mathbf{6 4 0}$ |
| Employer's contribution to Provident fund $(12 \% \times$ Rs. 33,600$)$ | $\mathbf{4 , 0 3 2}$ |
| Employer's contribution to Pension fund $(7 \% \times$ Rs. 33,600$)$ | $\mathbf{2 , 3 5 2}$ |
| Total monthly wages | 46,254 |
| Hours worked by Mr. Z (hours) | 186.5 |
| Effective wage rate per hour | $\mathbf{2 4 8}$ |

*(Daily Basic + DA) $\div 7.5$ hours
$=(1,000+200) \div 7.5=$ Rs. 160 per hour
(iii) Calculation of wages to be charged to Job no. HT200
$=$ Rs. $248 \times 100$ hours $=$ Rs. 24,800$\} 1 \mathrm{M}\}$

## Answer 6:

(a) (i) Discretionary Cost Centre: The cost centre whose output cannot be measured in financial terms, thus input-output ratio cannot be defined. The cost of input is compared with allocated budget for the activity. Example of discretionary cost centres are Research \& Development department, Advertisement department where output of these department cannot be measured with certainty and co-related with cost incurred on inputs.
(ii) Investment Centres: These are the responsibility centres which are not only responsible for profitability but also has the authority to make capital investment decisions. The performance of these responsibility centres are measured on the basis of Return on Investment (ROI) besides profit. Examples of investment centres are Maharatna, Navratna and Miniratna companies of Public Sector Undertakings of Central Government.

## Answer:

(b) The advantages of zero-based budgeting are as follows:

- It provides a systematic approach for the evaluation of different activities and ranks them in order of preference for the allocation of scarce resources.
- It ensures that the various functions undertaken by the organization are critical for the achievement of its objectives and are being performed in the best possible way.
- It provides an opportunity to the management to allocate resources for various activities only after having a thorough cost-benefit-analysis. The chances of arbitrary cuts and enhancement are thus avoided.
- The areas of wasteful expenditure can be easily identified and eliminated.
- Departmental budgets are closely linked with corporation objectives.

The technique can also be used for the introduction and implementation of the system of 'management by objective.' Thus, it cannot only be used for fulfilment of the objectives of traditional budgeting but it can also be used for a variety of other purposes.

## Answer:

## (c) Difference between Cost Control and Cost Reduction

| Cost Control |  | Cost Reduction |  |
| :--- | :--- | :--- | :--- |
| 1. | Cost control aims at maintaining <br> the costs in accordance with the <br> established standards. | 1. | Cost reduction is concerned with reducing <br> costs. It challenges all standards and <br> endeavours to better them continuously |
| 2. | Cost control seeks to attain lowest <br> possible cost under existing <br> conditions. | 2. | Cost reduction recognises no condition as <br> permanent, since a change will result in <br> lower cost. |
| 3. | In case of Cost Control, emphasis <br> is on past and present |  |  |
| 4. | Cost Control is a preventive <br> function | 4. | In case of cost reduction it is on present <br> and future. |
| Cost reduction is a corrective function. It |  |  |  |
| operates even when an efficient cost |  |  |  |
| control system exists. |  |  |  |$|$| Cost control ends when targets are |
| :--- |
| achieved | 5. | Cost reduction has no visible end. |
| :--- |

## Answer:

## (d) Treatment of by-product cost in Cost Accounting:

(i) When they are of small total value, the amount realized from their sale may be dealt as follows:
> Sales value of the by-product may be credited to Costing Profit \& Loss Account and no credit be given in Cost Accounting. The credit to Costing Profit \& Loss Account here is treated either as a miscellaneous income or as additional sales revenue.
$>\quad$ The sale proceeds of the by-product may be treated as deduction from the total costs. The sales proceeds should be deducted either from production cost or cost of sales.
(ii) When they require further processing:

In this case, the net realizable value of the by-product at the split-off point may be arrived at by subtracting the further processing cost from realizable value of by-products. If the value is small, it may be treated as discussed in (i) above.
$\qquad$

