Enown for Best Resulic

PAPER : COSTING
Answer to questions are to be given only in English except in the case of candidates who have opted for Hindi Medium. If a candidate who has not opted for Hindi Medium. His/her answer in Hindi will not be valued.

Question No. 1 is compulsory.
Candidates are also required to answer any Four questions from the remaining Five Questions.
In case, any candidate answers extra question(s)/sub-question(s) over and
above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.
Wherever necessary, suitable assumptions may be made and disclosed by way of note.

Answer 1:

(a) Workings Notes:

Calculation of Total hours saved:

	M	J		
No. of garments assigned (Pieces.)	15	21		
Hour allowed per piece (Hours)	8	8		
Total hours allowed (Hours)	120	168		
Hours Taken (Hours)	100	140		
Hours Saved (Hours)	$\mathbf{2 0}$	$\mathbf{2 8}$		
				(Each bold $=\mathbf{1 / 2 ~ M})$

(i) Calculation of loss incurred due to incorrect rate selection:
(While calculating loss, only excess rate per hour has been taken)

	M (Rs.)	J (Rs.)	Total (Rs.)
Basic Wages	1,200 $(100 \mathrm{Hrs}$.$\times Rs. 12)$	1,680 $(140 \mathrm{Hrs}$.$\times Rs.12)$	2,880
Bonus (as per Halsey Scheme)	120	168	288
(50\% of Time Saved \times Excess Rate)	(50\% of 20 Hrs. \times Rs. 12$)$	$(50 \%$ of $28 \mathrm{Hrs} \times$. Rs. 12$)$	
Excess Wages Paid	$\mathbf{1 , 3 2 0}$	$\mathbf{1 , 8 4 8}$	3,168

(Each bold $=1 / 2 \mathrm{M}$)
(ii) Calculation of loss incurred due to incorrect rate selection had Rowan scheme of bonus payment followed:

	$\begin{gathered} \mathbf{M} \\ \text { (Rs.) } \end{gathered}$	$\underset{(\text { Rs. })}{\mathrm{J}}$	Total (Rs.)
Basic Wages	$\begin{gathered} 1,200 \\ (100 \text { Hrs. } \times \\ \text { Rs.12 }) \\ \hline \end{gathered}$	$\begin{gathered} 1,680 \\ (140 \text { Hrs. } \times \\ \text { Rs.12 }) \end{gathered}$	2,880
Bonus (as per Rowan Scheme) $\left(\begin{array}{cc} \text { Time } & \text { Taken } \\ \text { Time } & \text { Allowed } \end{array} \times \text { Time } \begin{array}{lll} \text { Saved } & \times_{\text {Excess }} & \text { Rate } \end{array}\right)$	$\left.\begin{array}{c} 200 \\ \left(\frac{100}{20} \times 20 \times R s .12\right. \end{array}\right)$	$\left.\begin{array}{c} 280 \\ \left(\frac{140}{168} \times 28 \times R s .12\right. \end{array}\right)$	480
Excess Wages Paid	1,400	1,960	3,360

(iii) Calculation of amount that could have been saved if Rowan Scheme were followed: Known for Best Resull

	M (Rs.)	J (Rs.)	Total (Rs.)
Wages paid under Halsey Scheme	1,320	1,848	3,168
Wages paid under Rowan Scheme	1,400	1,960	3,360
Difference (loss)	$\mathbf{(8 0)}$	$\mathbf{(1 1 2)}$	(192)

(Each bold $=1 / 2 \mathrm{M}$)
(iv) Rowan Scheme of incentive payment has the following benefits, which is suitable with the nature of business in which JBL Sisters operates:
(a) Under Rowan Scheme of bonus payment, workers cannot increase their earnings or bonus by merely increasing its work speed. Bonus under Rowan Scheme is maximum when the time taken by a worker on a job is half of the time allowed. As this fact is known to the workers, therefore, they work at such a speed which helps them to maintain the quality of output too.
(1/2 Mark)
(b) If the rate setting department commits any mistake in setting standards for time to be taken to complete the works, the loss incurred will be relatively low.
(1/2 Mark)

Answer:

(b) (i)

Statement Showing Joint Cost Allocation to 'Cromex'

Particulars	Cromex (Rs.)
Sales (Rs. $40 \times 2,000$ units)	80,000
Less: Post Split Off Costs $(4,000+18,000+6,000)$	$(28,000)$
Less: Estimated Profit (Rs. $5 \times 2,000$ units)	$(10,000)$
Joint cost allocable	42,000

(ii) Statement Showing Product Wise and Overall Profitability

Particulars	Bomex (Rs.)	Cromex (Rs.)	Total (Rs.)
Sales	$\mathbf{2 , 0 0 , 0 0 0}$	$\mathbf{8 0 , 0 0 0}$	$\mathbf{2 , 8 0 , 0 0 0}$
Less: Share in Joint Expenses	$\mathbf{(1 , 3 8 , 0 0 0) *}$	$\mathbf{(4 2 , 0 0 0)}$	$\mathbf{(1 , 8 0 , 0 0 0)}$
Less: Post Split Off Costs	$\mathbf{(3 6 , 0 0 0)}$	$\mathbf{(2 8 , 0 0 0)}$	$\mathbf{(6 4 , 0 0 0)}$
Profit	$\mathbf{2 6 , 0 0 0}$	$\mathbf{1 0 , 0 0 0}$	$\mathbf{3 6 , 0 0 0}$

(*) 1,80,000-42,000
(Each bold = $\mathbf{1} \mathbf{4}$ Mark)

Answer:

(c) (i)
(a) Inventory turnover ratio (Refer to working note)
$=\underline{\text { Cost of stock of raw material consumed }}$ Average stock of raw material
$\left.=\frac{R s \cdot 1,68,00,000}{R s \cdot 10,00,000}=16.8 \quad\right\}\{\mathbf{1 . 5} \mathbf{~ M}\}$
(b) Average number of days for which the average inventory is held
$=\frac{365}{\text { Inventory turnover ratio }}=\frac{365 \text { days }}{16.8}=21.73$ days $\}\{\mathbf{1 . 5} \mathbf{M}\}$

Working Note:

Particulars	(Rs.)
Opening stock of raw material	$9,00,000$
Add: Material purchases during the year	$1,70,00,000$
Less: Closing stock of raw material	$\mathbf{1 1 , 0 0 , 0 0 0}$
	$\mathbf{1 , 6 8 , 0 0 , 0 0 0}$

(ii) The Inventory turnover ratio for material X is 16.8 which mean an inventory item takes only 21.73 or 22 days to issue from stores for production process. The rate is better than the industry rate which is 10 time or 36.5 days. This inventory turnover ratio indicates better inventory management system and good demand for the final product in market.
(1.5 M)

Answer:

(d) Preparation of Cost Sheet for Super Pen

No. of units produced $=40,000$ units
No. of units sold $=36,000$ units

Particulars	Per unit (Rs.)	Total (Rs.)
Direct materials (Working note- (i))	$\mathbf{8 . 0 0}$	$\mathbf{3 , 2 0 , 0 0 0}$
Direct wages (Working note- (ii))	$\mathbf{4 . 0 0}$	$\mathbf{1 , 6 0 , 0 0 0}$
Prime cost	$\mathbf{1 2 . 0 0}$	$\mathbf{4 , 8 0 , 0 0 0}$
Production overhead (Working note- (iii))	$\mathbf{1 . 2 0}$	$\mathbf{4 8 , 0 0 0}$
Factory Cost	$\mathbf{1 3 . 2 0}$	$\mathbf{5 , 2 8 , 0 0 0}$
Administration Overhead* (200\% of direct wages)	$\mathbf{8 . 0 0}$	$\mathbf{3 , 2 0 , 0 0 0}$
Cost of production	$\mathbf{2 1 . 2 0}$	$\mathbf{8 , 4 8 , 0 0 0}$
Less: Closing stock (40,000 units $-36,000$ units)	-	$\mathbf{(8 4 , 8 0 0)}$
Cost of goods sold i.e. $\mathbf{3 6 , 0 0 0}$ units	$\mathbf{2 1 . 2 0}$	$\mathbf{7 , 6 3 , 2 0 0}$
Selling cost	$\mathbf{1 . 0 0}$	$\mathbf{3 6 , 0 0 0}$
Cost of sales/ Total cost	$\mathbf{2 2 . 2 0}$	$\mathbf{7 , 9 9 , 2 0 0}$
Profit	$\mathbf{7 . 8 0}$	$\mathbf{2 , 8 0 , 8 0 0}$
Sales value (Rs. $30 \times 36,000$ units)	$\mathbf{3 0 . 0 0}$	$\mathbf{1 0 , 8 0 , 0 0 0}$

(Each bold = 1/6 Mark)

Working Notes:

(i) Direct material cost per unit of Normal pen $=M$ Direct material cost per unit of Super pen $=2 \mathrm{M}$
Total Direct Material cost $=2 M \times 40,000$ units $+M \times 1,20,000$ units
Or, Rs. 8,00,000 $=80,000 \mathrm{M}+1,20,000 \mathrm{M}$
Or, M

$$
=\frac{R s \cdot 8,00,000}{R s \cdot 2,00,000}=R s \cdot 4
$$

Therefore, Direct material Cost per unit of Super pen $=2 \times$ Rs. $4=$ Rs. 8
(Each working note $=1 / 6$ Mark)
(ii) Direct wages per unit for Super pen

Direct wages per unit for Normal Pen

$$
\text { So, }(W \times 40,000)+(0.6 W \times 1,20,000)
$$

$$
\begin{aligned}
& =W \\
& =0.6 \mathrm{~W} \\
& =\text { Rs. } 4,48,000
\end{aligned}
$$ $W=$ Rs. 4 per unit

(Each working note $=1 / 6$ Mark)
(iii) Production overhead per unit $=\frac{R s \cdot 1,92,000}{\left(40,000{ }^{+} 1,20,000\right)}=R_{R s} .1 .20$

Production overhead for Super pen = Rs. $1.20 \times 40,000$ units $=$ Rs. 48,000
(Each working note $=1 / 6$ Mark)

* Administration overhead is specific to the product as it is directly related to direct labour as mentioned in the question and hence to be considered in cost of production only.
(1/6 M)
Assumption: It is assumed that in point (1) and (2) of the Question, direct materials cost and direct wages respectively is related to per unit only. Note: Direct Material and Direct wages can be calculated in alternative ways.
(1/6 M)

Answer 2:

$\begin{aligned} & \text { (a) (i) Material price variance: } \\ &=\text { Actual Quantity } \begin{array}{l}\text { Consumed (Std. Price - Actual Price) } \\ \\ =\end{array} \\ &\end{aligned}$
(ii) Material usage variance:
$=$ Std. price per piece (Std. Quantity - Actual Quantity ${ }_{\text {consumed }}$)
$=$ Rs. 9 (1,900 units $\times 10$ pcs. $-22,000$ pcs. $)=$ Rs. 27,000 (Adverse)
(iii) Labour rate variance:
$=$ Actual hours ${ }_{\text {paid }}$ (Std. rate - Actual rate)
$=5,150$ hours $\left(R s .12-\frac{R s .51,500}{5,150 \text { hours }}\right)=R s .10,300$ (Favourable)
(iv) Labour efficiency variance:
$=$ Std. rate per hour (Std. hours - Actual hours worked)
$=$ Rs. 12 (1,900 units $\times 2.5$ hours $-5,150$ hours) $=$ Rs. 4,800 (Adverse)
(v) Fixed overhead expenditure variance:
= Budgeted Overhead - Actual Overhead
$=$ Rs. 84,000 - Rs. 92,000 = Rs. 8,000 (Adverse)
(vi) Fixed overhead efficiency variance:
$=$ Std. rate per hour (Std. hours - Actual hours ${ }_{\text {worked }}$)
$=$ Rs. 16 (1,900 units $\times 2.5$ hours $-5,150$ hours) $=$ Rs. 6,400 (Adverse)
Or,
Fixed overhead efficiency variance on the basis of units
$=$ Std. rate per unit (Actual output - Standard output for actual hours)
$=$ Rs. 40 (1,900 units $-5,150$ hours $/ 2.5$ hours) $=$ Rs. 6,400 (Adverse)
(vii) Fixed overhead capacity variance:
$=$ Std. rate per hour (Actual hours ${ }_{\text {worked }}$ - Budgeted hours)
$=$ Rs. $16\left(5,150\right.$ hours $\left.-\frac{R s .84,000}{R s .16}\right)=R s .1,600$ (Adverse)
Or,
Fixed overhead capacity variances on the basis of units
= Std. rate per unit (Standard output for actual hours - Budgeted output)
$=$ Rs. 40 (2,060 units - Rs. 84,000 / Rs. 40) = Rs. 1,600 (Adverse)
($(\mathbf{i}, \mathrm{ii},=1.25 \mathrm{M}) \&(i i i, i v, v, v i, v i i=1.5 \mathrm{M}))$
Answer:
(b) (i)

Process ' X^{\prime} Account

Prarticulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)	Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)
To Opening Stock	15,000	-	15,000	By Process 'Y' A/c (Transfer)	$\mathbf{2 , 9 6 , 0 0 0}$	$\mathbf{7 4 , 0 0 0}$	$\mathbf{3 , 7 0 , 0 0 0}$
To Material	80,000	-	80,000				
To Wages	$1,25,000$	$-1,25,000$					
Total	$2,20,000$	$-2,20,000$					
Less: Closing stock	20,000	$-20,000$					
Prime Cost	$2,00,000$	$2,00,000$					
To Manufacturing Overheads	96,000	$-26,000$					
Total cost	$2,96,000$	$-2,96,000$					

To Costing Profit and Loss A/c (20\% on transfer Price or 25% on cost)		74,000	74,000				
	$2,96,000$	74,000	$3,70,000$		$2,96,000$	74,000	$3,70,000$

(Each bold = 3/4 Mark)
Process ' \mathbf{Y} ' Account
Dr.

Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)	Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)
To Opening Stock	23,000	4,000	27,000	By Process 'Z' A/c (Transfer)	$\mathbf{5 , 3 6 , 3 7 9}$	$\mathbf{2 , 2 6 , 1 2 1}$	$\mathbf{7 , 6 2 , 5 0 0}$
To Process 'X' A/c	$2,96,000$	74,000	$3,70,000$				
To Material	65,000	--	65,000				
To Wages	$1,08,000$	--	$1,08,000$				
Total	$4,92,000$	78,000	$5,70,000$				
Less: Closing stock	27,621	4,379	32,000				
Prime Cost	$4,64,379$	73,621	$5,38,000$				
To Manufacturing Overheads	72,000	--	72,000				
Total cost	$5,36,379$	73,621	$6,10,000$				
To Costing Profit and Loss A/c (20\% on transfer Price or 25\% on cost)	--	$1,52,500$	$1,52,500$		$5,36,379$	$2,26,121$	$7,62,500$

(Each bold = 3/4 Mark)
Process 'Z' Account

(Each bold = 3/4 Mark)
Finished Stock Account
Dr

Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)	Particulars	Cost (Rs.)	Profit (Rs.)	Total (Rs.)
To Opening	25,000	20,000	45,000	By Costing P\&L	$\mathbf{7 , 4 1 , 8 6 2}$	$\mathbf{6 , 5 8 , 1 3 8}$	$\mathbf{1 4 , 0 0 , 0 0 0}$

Stock				A/c A/c (Transfer)			
To Process 'Z' A/c	$7,45,629$	$5,50,371$	$12,96,000$				
Total	$7,70,629$	$5,70,371$	$13,41,000$				
Less: Closing stock	28,767	21,233	50,000				
To Costing Profit and Loss A/c	$7,41,862$	$5,49,138$	$12,91,000$				
		$1,09,000$	$1,09,000$				
	$7,41,862$	$6,58,138$	$14,00,000$		$7,41,862$	$6,58,138$	$14,00,000$

(Each bold = 3/4 Mark)

(ii)
 Costing Profit \& Loss Account for the year ending 31st March, 2014

Dr.

Particulars	Amount (Rs.)	Particulars	Amount (Rs.)
To Provision for unrealized profit on closing stock (Rs. 4,379 + Rs. 9,750 + Rs. 21,233)	35,362	By Provision for unrealized profit on opening stock (Rs. 4,000 + Rs. 10,000 + Rs. 20,000)	34,000
To Net Profit	$\mathbf{6 , 5 8 , 1 3 8}$	By Process X A/c	74,000
		By Process Y A/c	$1,52,500$
	By Process Z A/c	$3,24,000$	
		By Finished Stock A/c	$1,09,000$
	$6,93,500$		$6,93,500$

(Bold = 1/2 Mark)

Workings:

Calculation of amount of unrealized profit on closing stock:

Process 'X'	=	Nil	
		Rs. 78,000	
Process 'Y'	=	Rs. 5, 70 ,000	Rs. $32,000=$ Rs.4,379
		Rs. 2,36,121	
Process 'Z'	=	$\text { Rs. } 9,44,500$	Rs. $39,000=$ Rs .9,750
		Rs. 5,50,371	Rs. $50.000=$ Rs. 21.233
Finished Stock	$=$	Rs. $12,96,000$	

(iii)

Liabilities	Amount (Rs.)	Assets	Amount (Rs.)
Net profit	$\mathbf{6 , 5 8 , 1 3 8}$	Closing stock:	
		Process - X	20,000
		Process - Y	32,000
		Process -Z	39,000
			50,000
		Less: Provision for unrealized profit	$1,41,000$
		$\mathbf{1 , 0 5 , 3 6 2}$	
			$\mathbf{1 , 0 3 8}$

(Each bold $=1 / 4$ Mark) Enown for Best Resull

Answer 3:

(a) Working Notes:

Total Distance (in km.) covered per month

Bus route	Km. per trip	Trips per day	Days per month	Km. per month
Delhi to Chandigarh	250	2	8	4,000
Delhi to Agra	210	2	10	4,200
Delhi to Jaipur	270	2	6	3,240

Passenger- km. per month

	Total seats available per month (at 100\% capacity)	Capacity utilised		Km. per trip	PassengerKm. per month
		(\%)	Seats		
Delhi to Chandigarh \& Back	800 (50 seats $\times 2$ trips $\times 8$ days)	90	720	250	$\begin{array}{r} 1,80,000 \\ (720 \text { seats } \times \\ 250 \mathrm{~km} .) \\ \hline \end{array}$
Delhi to Agra \& Back	1,000 $(50$ seats $\times 2$ trips $\times 10$ days $)$	85	850	210	$\begin{array}{r} 1,78,500 \\ (850 \text { seats } \times \\ 210 \mathrm{~km} .) \\ \hline \end{array}$
Delhi to Jaipur \& Back	600 (50 seats $\times 2$ trips $\times 6$ days)	100	600	270	$\begin{array}{r} 1,62,000 \\ (600 \text { seats } \times \\ 270 \mathrm{~km} .) \\ \hline \end{array}$
Total					5,20,500

(Bold = 1 Mark)

Monthly Operating Cost Statement

	(Rs.)	(Rs.)
(i) Running Costs		
Diesel $\{(11,440 \mathrm{~km} \div 4 \mathrm{~km}) \times$ Rs. 56$\}$	1,60,160	
Lubricant oil $\{(11,440 \mathrm{~km} \div 100) \times$ Rs. 10$\}$	1,144	1,61,304
(ii) Maintenance Costs		
Repairs \& Maintenance		1,000
(iii) Standing charges		
Salary to driver	24,000	
Salary to conductor	21,000	
Salary of part-time accountant	5,000	
Insurance (Rs. 4,800 $\div 12$)	400	
Road tax (Rs. 15,915 $\div 12$)	1,326.25	
Permit fee	315	
Depreciation \{(Rs. 12,00,000 20%), 12\}	20,000	72,041.25
Total costs per month before Passenger Tax (i) + (ii) + (iii)		2,34,345.25
Passenger Tax*		93,738.10
Total Cost		3,28,083.35
Add: Profit*		1,40,607.15
Total takings per month		4,68,690.50

(Each Bold =1/4 M)
*Let, total takings be X then
$X=\quad$ Total costs per month before passenger tax $+0.2 X$ (passenger tax) + $0.3 \times$ (profit)
$\mathrm{X}=$ Rs. $2,34,345.25+0.2 \mathrm{X}+0.3 \mathrm{X}$
$0.5 X=$ Rs. $2,34,345.25$ or, $X=$ Rs. $4,68,690.50$
Passenger Tax $=20 \%$ of Rs. 4,68,690.50 = Rs. 93,738.10
Profit $=30 \%$ of Rs. $4,68,690.50=$ Rs. $1,40,607.15$ known for Best Resull

Calculation of Rate per passenger km. and fares to be charged for

 different routesRate per Passenger-Km. $=\frac{\text { Total takings per month }}{\text { Total Passenger }-\mathrm{Km} \cdot \text { per month }}$

$$
=\frac{R s \cdot 4,68,690 \cdot 50}{5,20,500 \quad \text { Passenger }-\mathrm{Km} .}=\text { Rs. } 0 \cdot 90
$$

\}\{1.25 M\}

Bus fare to be charged per passenger.

Delhi to Chandigarh	$=$	Rs. $0.90 \times 250 \mathrm{~km}$	$=$	Rs. 225.00
Delhi to Agra	$=$	Rs. $0.90 \times 210 \mathrm{~km}$	$=$	Rs. 189.00
Delhi to Jaipur	$=$	Rs. $0.90 \times 270 \mathrm{~km}$	$=$	Rs. $\mathbf{2 4 3 . 0 0}$

(Each bold = 1 Mark)

Answer:

(b) (i) Summary of Apportionment of Overheads
(Rs.)

Items	Basis of Apportionment	Total Amount	Production Deptt.			Service Deptt.		
			M1	M2	A1	Store Service	Engineering Service	General Service
Indirect wages	Allocation given	1,25,140	46,520	41,340	16,220	8,200	5,340	7,520
Consumable stores	Allocation given	45,200	12,600	18,200	4,200	2,800	4,200	3,200
Depreciation	Capital value of machine (20:15:5:2:6:2)	39,600	15,840	11,880	3,960	1,584	4,752	1,584
Insurance of Machine	Capital value of machine (20:15:5:2:6:2)	7,200	2,880	2,160	720	288	864	288
Insurance on Building	1/3rd to M1 Balance area basis $(-: 12: 16: 4: 5: 3)$	3,240	1,080	648	864	216	270	162
Power	$\begin{aligned} & \text { HP Hr\% } \\ & (10: 7: 1:-: 2:-) \end{aligned}$	6,480	3,240	2,268	324	--	648	--
Light	$\begin{array}{\|l\|} \hline \text { Area } \\ (10: 12: 16: 4: 5: 3) \end{array}$	5,400	1,080	1,296	1,728	432	540	324
Rent*	Area (10:12:16:4:5:-)	12,675	2,697	3,236	4,315	1,079	1,348	--
	Total	2,44,935	85,937	81,028	32,331	14,599	17,962	13,078

(Each bold $=\mathbf{1 / 8} \mathbf{~ M}$)
*Rent to be apportioned among the departments which actually use the rented building. The notional rent is imputed cost and is not included in the calculation.
(ii) Allocation of service departments overheads

Service Deptt.	Basis of Apportionment	Production Deptt.			Service Deptt.		
		M1	M2	A1	Store Service	Engineering Service	General Service
Store	Ratio of consumable value (126:182:42)	5,256	7,591	1,752	$(14,599)$	--	--
Engineering service	In Machine hours Ratio of M1 and M2 (4:5)	7,983	9,979	--	--	$(17,962)$	--
General service	$\begin{aligned} & \text { Labour hour Basis } \\ & (20: 15: 30) \end{aligned}$	4,024	3,018	6,036	--	--	$(13,078)$
Production Department allocated in (i)		85,937	81,028	32,331			
Total		1,03,200	1,01,616	40,119			

(Each bold $=\mathbf{1 / 8} \mathbf{~ M}$) Known for Best resuli
(iii) Overhead Absorption rate

	M1	M2	A1
Total overhead allocated	$1,03,200$	$1,01,616$	40,119
Machine hours	40,000	50,000	-
Labour hours	-	-	$3,00,000$
Rate per machine hour	$\mathbf{2 . 5 8}$	$\mathbf{2 . 0 3 2}$	-
Rate per Direct labour	-	-	$\mathbf{0 . 1 3 4}$

(Each bold - 1/3 M)
(iv) Statement showing overhead absorption for Product \mathbf{X} and \mathbf{Y}

Machine Deptt.	Absorption	Product \mathbf{X}		Product \mathbf{Y}	
	Rate	Hours	(Rs.)	Hours	(Rs.)
M_{1}	2.58	10	25.80	6	15.48
M_{2}	2.032	4	8.13	14	28.45
$\mathrm{~A}_{1}$	0.134	14	1.88	18	2.41
			$\mathbf{3 5 . 8 1}$		$\mathbf{4 6 . 3 4}$

(Each bold $=\mathbf{1 / 4}$ M)

Answer 4:

(a)	(a) Calculation of Total Cost for the Hostel Job:		
	Particulars	Amount (Rs.)	Amount (Rs.)
	Direct Material Cost:		
	- 15 mm GI Pipe (Working Note- 1)	11,051.28	
	- 20 mm GI Pipe (Working Note-2)	2,588.28	
	- Other fitting materials (Working Note-3)	3,866.07	
	- Stainless steel faucet $15 \text { units } \times\left(\frac{6 \times R s .204+15 \times R s .209}{21 \text { units }}\right)$	3,113.57	
	- Valve $6 \text { units } \times\left(\frac{8 \times R s .404+10 \times \text { Rs } .402+14 \times R s .424}{32 \text { units }}\right)$	2,472.75	23,091.95
	Direct Labour:		
	- Plumber [(180 hours x Rs. 50) + (12 hours \times Rs. 25)]	9,300.00	
	$\begin{aligned} & \text { Helper [(192 hours } \times \text { Rs. } 35)+(24 \text { hours } \times \text { Rs. } \\ & 17.5)] \end{aligned}$	7,140.00	16,440.00
	- Overheads [Rs. $13 \times(180+192)$ hours]		4,836.00
	Total Cost		44,367.95

(Each bold $=\mathbf{1 / 2} \mathbf{~ M}$)
(b) Price to be charged for the job work:

Total Cost incurred on the job	Amount (Rs.)
Add: 25% Profit on Job Price $\left(\frac{44,367.95}{75 \%} \times 25 \%\right)$	$\mathbf{1 4 , 7 8 9 . 3 2}$
	$\mathbf{5 9 , 1 5 7 . 2 7}$

Working Note:

1. Cost of $\mathbf{1 5 m m}$ GI Pipe

Date
Amount (Rs.) Enown for Best Resull

$17-08-2014$	8 units \times Rs. 600	$4,800.00$
$28-08-2014$	10 units $\times\left(\frac{4 \times 600+35 \times R s .628}{39 \text { units }}\right)$	$6,251.28$
		$11,051.28$

(Each working note = 1 M)
2. Cost of 20mm GI Pipe

Date		Amount (Rs.)
$12-08-2014$	2 units \times Rs. 660	$1,320.00$
$28-08-2014$	2 units $\times\left(\frac{8 \times 660+30 \times R s .610+20 \times R s .660}{58 \text { units }}\right)$	$1,268.28$
		$2,588.28$

(Each working note = 1 M)
3. Cost of Other fitting materials

Date		Amount (Rs.)
$12-08-2014$	18 units \times Rs. 26	468.00
$17-08-2014$	30 units \times Rs. 26	780.00
$28-08-2014$	34 units $\times\left(\frac{12 \times R s .26+150 \times R s .28}{162 \text { units }}\right)$	946.96
$30-08-2014$	60 units $\times\left(\frac{12 \times R s .26+150 \times R s .28}{162 \text { units }}\right)$	$1,671.11$
		$3,866.07$

(Each working note = 1 M)

Answer:

(b)

Particulars	(Rs.)
Suppose sales	100
Variable cost	60
Contribution	40
P/V ratio	40%
Fixed cost	= Rs. 80,000

(i) Break-even point $=$ Fixed Cost , P/V ratio $=80,000 \div \quad$ or Rs. $2,00,000$ 40\%
(ii) 15\% return on Rs. 2,00,000 30,000

Fixed Cost
80,000
Contribution required $1,10,000$
Sales volume required $=$ Rs. $1,10,000 \div 40 \% \quad$ or Rs. $2,75,000$
(iii) Avoidable fixed cost if business is locked up = Rs. 80,000 - Rs. 25,000 = Rs. 55,000
Minimum sales required to meet this cost: Rs. $55,000 \div 40 \%$
or Rs. $1,37,500$
Mr. X will be better off by locking his business up, if the sale is less than Rs. 1,37,500
(Each Point = 3 M)

Answer 5:

(a) Workings:

1. Statement showing computation of Breakeven of merged plant and other required information

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Particulars	Plan A		Plant B		Merged Plant (100\%) (Rs.)
		$\begin{gathered} \text { Before } \\ \text { (90\%) } \\ \text { (Rs.) } \end{gathered}$	After (100\%) (Rs.)	$\begin{gathered} \text { Before } \\ \text { (60\%) } \\ \text { (Rs.) } \\ \hline \end{gathered}$	After (100\%) (Rs.)	
(i)	Sales	63,00,000	70,00,000	48,00,000	80,00,000	1,50,00,000
(ii)	Variable cost	39,60,000	44,00,000	22,50,000	37,50,000	81,50,000
(iii)	Contribution (i - ii)	23,40,000	26,00,000	25,50,000	42,50,000	68,50,000
(iv)	Fixed Cost	13,00,000	13,00,000	15,00,000	15,00,000	28,00,000
(v)	Profit (iii - iv)	10,40,000	13,00,000	10,50,000	27,50,000	40,50,000

(Each bold $=1 / 4 \mathrm{M}$)
2. PV ratio of merged plant $=\frac{\text { Contributi on }}{\text { Sales }} \times 100$

$$
\left.=\frac{R s \cdot 68,50,000}{R s \cdot 1,50,00,000} \times 100=45.67 \% \quad\right\}\{\mathbf{1} / \mathbf{4} \mathbf{M}\}
$$

(i) Break even sales of merged plant $=\frac{\text { Fixed Cost }}{P / V \text { Ratio }}$

$$
\begin{aligned}
& =\frac{R s \cdot 28,00,000}{45 \cdot 67 \%} \\
& =\text { Rs. } \mathbf{6 1}, \mathbf{3 0 , 9 3 9 . 3 4} \text { (approx.) }\}\{\mathbf{1} / \mathbf{4} \mathbf{M}\} \\
& \left.=\frac{R s \cdot 61,30,939.34}{R s \cdot 1,50,00,000} \times 100=40.88 \%\right\}\{\mathbf{1} / \mathbf{4} \mathbf{~}\}
\end{aligned}
$$

Capacity utilisation
(ii) Profitability of the merged plant at $\mathbf{8 0 \%}$ capacity utilisation
$=$ (Rs. 1,50,00,000 x 80\%) x P/v ratio - fixed cost
$=$ Rs. 1,20,00,000 x 45.67\% - Rs. 28,00,000
$=$ Rs. 26,80,400 $\}\{1.5 \mathrm{M}\}$
(iii) Sales to earn a profit of Rs. $\mathbf{6 0 , 0 0}, 000$

Desired sales $=\frac{\text { Fixed } \text { Cost }+ \text { desired } \text { profit }}{P / V \text { Ratio }}$
$=\frac{R s \cdot 28,00,000+R s \cdot 60,00,000}{45.67 \%}$

$$
=\text { Rs. 1,92,68,666 }\}\{1.5 \mathrm{M}\}
$$

Answer:

(b) Flexible Budget before marketing efforts:

	Product A (Rs.) 6,000 units		Product B (Rs.) 9,000 units	
	Per unit	Total	Per unit	Total
Sales	120.00	7,20,000	78.00	7,02,000
Raw material cost	60.00	3,60,000	42.00	3,78,000
Direct labour cost per unit	30.00	1,80,000	18.00	1,62,000
Variable overhead per unit	12.00	72,000	6.00	54,000
Fixed overhead per unit	8.00	48,000	4.00	36,000
Total cost	110.00	6,60,000	70.00	6,30,000
Profit	10.00	60,000	8.00	72,000

(Each bold $=1 / 6 \mathrm{M}$)
(a) Flexible Budget after marketing efforts:

	Product A (Rs.)	Product B (Rs.)
	7,500 units	9,500 units

	Per unit	Total	Per unit	Total
Sales	$\mathbf{1 2 0 . 0 0}$	$\mathbf{9 , 0 0 , 0 0 0}$	$\mathbf{7 8 . 0 0}$	$\mathbf{7 , 4 1 , 0 0 0}$
Raw material cost	$\mathbf{6 0 . 0 0}$	$\mathbf{4 , 5 0 , 0 0 0}$	$\mathbf{4 2 . 0 0}$	$\mathbf{3 , 9 9 , 0 0 0}$
Direct labour cost per unit	$\mathbf{3 0 . 0 0}$	$\mathbf{2 , 2 5 , 0 0 0}$	$\mathbf{1 8 . 0 0}$	$\mathbf{1 , 7 1 , 0 0 0}$
Variable overhead per unit	$\mathbf{1 3 . 2 0}$	$\mathbf{9 9 , 0 0 0}$	$\mathbf{6 . 6 0}$	$\mathbf{6 2 , 7 0 0}$
Fixed overhead per unit	$\mathbf{6 . 7 2}$	$\mathbf{5 0 , 4 0 0}$	$\mathbf{3 . 9 8}$	$\mathbf{3 7 , 8 0 0}$
Total cost	$\mathbf{1 0 9 . 9 2}$	$\mathbf{8 , 2 4 , 4 0 0}$	$\mathbf{7 0 . 5 8}$	$\mathbf{6 , 7 0 , 5 0 0}$
Profit	$\mathbf{1 0 . 0 8}$	$\mathbf{7 5 , 6 0 0}$	$\mathbf{7 . 4 2}$	$\mathbf{7 0 , 5 0 0}$

Answer 6:
(a) Escalation clause in a contract empowers a contractor to revise the price of the) contract in case of increase in the prices of inputs due to some macro-economic or other agreed reasons. A contract takes longer period to complete and the factors based on which price negotiation is done at the time of entering into the contract may change till the contract completes. This protect the contractor from adverse financial impacts and empowers the contractor to recover the increased prices. As per t his clause, the contractor increases the contract price if the cost of materials, employees and other expenses increase beyond a certain limit. Inclusion of such a clause in a contract deed is called an "Escalation Clause".

Answer:

(b) Method of costing used in different industries:

S. No.	Industries	
(i)	Real Estate	Method of Costing
(ii)	Motor Repairing Workshop	Job Costing
(iii)	Chemical Industry	Process Costing
(iv)	Transport Service	Service/Operating Costing
(v)	Assembly of Bicycles	Unit/ Single/Output/Multiple Costing
(vi)	Biscuits Manufacturing Industry	Batch Costing
(vii)	Power Supply Companies	Service/Operating Costing
(viii)	Car Manufacturing Industry	Multiple Costing
(ix)	Cement Industry	Unit/Single/Output Costing
(x)	Printing Press	Job Costing

(Each Bold =1/2 M)

Answer:

(c) (i) Conversion cost: It is the cost incurred to convert raw materials into finished goods. It is the sum of direct wages, direct expenses and manufacturing overheads.
(ii) Sunk cost: Historical costs or the costs incurred in the past are known as sunk cost. They play no role in the current decision making process and are termed as irrelevant costs. For example, in the case of a decision relating to the replacement of a machine, the written down value of the existing machine is a sunk cost, and therefore, not considered.
(iii) Opportunity cost: It refers to the value of sacrifice made or benefit of opportunity foregone in accepting an alternative course of action. For example, a firm financing its expansion plan by withdrawing money from its bank deposits. In such a case the loss of interest on the bank deposit is the opportunity cost for carrying out the expansion plan.
(2.5 M = Each Point, Any Two)

Answer:

(d) PRACTICAL APPLICATIONS OF ACTIVITY BASED COSTING

As a Decision-Making Tool
$A B C$ can act as a decision making tools in the following ways:
(i) ABC along with some other Cost Management technique can be utilized to improve performance and profitability of an organization.
(ii) Wholesale distributors can gain significant advantage in the decisionmaking process through implementation of $A B C$ concepts by correlating costs to various activity. Introduction of new product or vendor can be better decided through ABC.
(iii) ABC can assist in decisions related to facility and resource expansion. Often the basis for relocation or opening of a new distribution center is based on cost associations. Reduction in freight or other logistic costs can offset the expense of the new facility, staff or equipment. The ABC model can identify the specific cost elements being targeted, providing a much clearer picture from which management can act.
(iv) Decision support for human resources can be augmented by ABC. Where activity, and therefore cost, can be associated to an individual, new levels of financial performance can be determined. This might be appropriate in cases of branch management or sales.
(v) Companies who wish to determine price based on cost plus markup basis find $A B C$ method of costing very relevant and are able to determine competitive prices for their products.
(Each point = 1M)
\qquad

