BUSINESS MATHEMATICS, REASONING \& STATISTICS

1. Ans. C

Explanation:

$$
\begin{aligned}
& =\log (1+2+3)=\log 6 \\
& =\log (1 \times 2 \times 3) \\
& =\log 1+\log 2+\log 3
\end{aligned}
$$

2. Ans. a

Explanation:
$\frac{\mathrm{A}}{\mathrm{B}}=\frac{2}{3}, \frac{\mathrm{~B}}{\mathrm{C}}=\frac{1}{4}$
$\mathrm{A}: \mathrm{B}: \mathrm{C}=2: 3: 12$
A's share $=$ Rs. $510 \times \frac{2}{17}=$ Rs. 60
3. Ans. d

Explanation:

$$
\begin{aligned}
\text { Present value } & =A\left(1^{+} i\right)^{-n}=10000 /\left(1^{+} 0.025\right)^{4} \\
& =10000 /(1.025)^{4} \\
& =10000 /(1.1038) \\
& =\text { Rs. } 9059.50
\end{aligned}
$$

4. Ans. a

Explanation:
Here $A=2000, i=\frac{6}{100^{\times} 12}=0.005, n=24$
Let Rs. P be the each payment.
\cdots Amount : $A=P\left[\frac{\left(1^{+} \mathrm{i}\right)^{\mathrm{n}-{ }^{1}}}{\mathrm{i}}\right] \Rightarrow 2000={ }_{\mathrm{P}}\left[\frac{\left(1^{+} 0.005\right)^{24}-1}{0.005}\right]={ }_{\mathrm{P}}\left[\frac{(1.005)^{24-}{ }^{24}}{0.005}\right]$
$\Rightarrow \mathrm{P}=\frac{2000^{\times} 0.005}{(1.005)^{24-1}}$ or $\mathrm{P}=\frac{10}{1.1272^{-1}}=\frac{10}{0.1272}=$ Rs. 78.61
5. Ans. b

Explanation:
$\mathrm{SI}=\frac{\mathrm{prt}}{100}$
$\frac{3}{8} \mathrm{P}=\frac{\mathrm{pxrx25}}{400}$
$r=6 \%$
6. Ans. d

Explanation:
The required no. of ways $=4!\times 3!=144$

MITTAL COMMERCE CLASSES

7. Ans. c

Explanation:
Total line can be made by $10 \mathrm{c}_{2}$
and $7_{c_{2}}$ lines could not be drawn because points are collinear
So Remaining $\Rightarrow{ }^{10} \mathrm{c}_{\mathrm{c}_{2}}{ }^{-} 7_{\mathrm{c}_{2}}+1$
$\Rightarrow \quad 25$
8. Ans. C

Explanation:

$$
\frac{(243)^{\frac{n}{5}} \cdot 3^{2 n+1}}{9^{n \times} \times 3^{n-1}}=\frac{3^{5 \frac{n}{5}} \times 3^{2 n+1}}{3^{2 n} \times 3^{n-1}}=\frac{\left(5 \times \frac{n}{5}\right) \times 3^{2 n+1}}{3^{2 n \times} \times 3^{n-1}}=\frac{3^{n \times} \times 3^{2 n+1}}{3^{2 n \times} \times 3^{n-1}}
$$

Here
$=\frac{3^{n+(2 n+1)}}{3^{2 n^{+n-1}}}=\frac{3^{(3 n+1)}}{3^{(3 n-1)}}=3^{(3 n+1)-(3 n-1)}=3^{2}=9$.
9. Ans. b

Explanation:
Let third proportial be T
$x^{2}-y^{2}, x^{-} y, T$
$x^{2}-y^{2}: x^{-} y:: x^{-} y: T$
$\left(x^{-} y\right)^{2}=\left(x^{2-} y^{2}\right)^{x} T$
$\frac{(x-y)^{2}}{x^{2}-y^{2}}={ }_{T}$
$\frac{x^{-} y}{x^{+} y}=T$
10. Ans. c

Explanation:
$x+\frac{1}{x}=\sqrt{2} \quad$ (squaring both sides)
$\left(x+\frac{1}{x}\right)^{2}=\sqrt{2}^{2}$
$x^{2}+\frac{1}{x^{2}}+2=2$
$x^{2}+\frac{1}{x^{2}}=0$
11. Ans. b

Explanation:
Roots are -3, 1, 2 then
Factors are $x+3, x-1, x-2$
and equation is $(x+3)(x-1)(x-2)=0$
$x^{3}-7 x+6=0$

MITTAL COMMERCE CLASSES

12. Ans. c

Explanation:
Let the total Capital be Rs. X
Then $\left(\frac{\mathrm{X}}{3} \times \frac{7}{100} \times 1\right)+\left(\frac{\mathrm{X}}{4} \times \frac{8}{100} \times 1\right)+\left(\frac{5 \mathrm{X}}{12} \times \frac{10}{100} \times{ }_{1}\right)={ }_{561}$
$X=6600$
13. Ans. a

Explanation:

$$
\begin{aligned}
\mathrm{A} & =\frac{R}{r}\left[(1+r)^{n}-1\right] \\
& =\frac{6000}{0.09}\left[(1+0.09)^{8}-1\right] \\
& =\text { Rs. } 66170.84
\end{aligned}
$$

14. Ans. a

Explanation:
First Time
$A=3 x$
$P=x$
$\mathrm{n}=6$
Second Time

$$
\begin{aligned}
& \mathrm{A}=27 \mathrm{x} \\
& \mathrm{P}=\mathrm{x} \\
& \mathrm{n}=? \\
& 27 \mathrm{x}=\mathrm{x}\left[1+\frac{\mathrm{r}}{100}\right]^{\mathrm{n}} \\
& (3)^{3}=\left[1+\frac{\mathrm{r}}{100}\right]^{\mathrm{n}}
\end{aligned}
$$

$\therefore 3 \mathrm{x}=\mathrm{x}\left[1+\frac{\mathrm{r}}{100}\right]^{6}$

$$
3=\left[1^{+}+\frac{\mathrm{r}}{100}\right]^{6}
$$

$$
\left\{\left[1^{+}+\frac{\mathrm{r}}{100}\right]^{6}\right\}^{3}=\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}}
$$

$$
\left(1+\frac{\mathrm{r}}{100}\right)^{18}=\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}} \Rightarrow{ }_{\mathrm{n}}=18
$$

15. Ans. b

Explanation:
By formula

$$
\begin{aligned}
& \quad \boldsymbol{n}(\boldsymbol{A} \cup \boldsymbol{B} \cup \boldsymbol{C})=\boldsymbol{n}(\boldsymbol{A})+\boldsymbol{n}(\boldsymbol{B})+\boldsymbol{n}(\boldsymbol{C})-\boldsymbol{n}(\boldsymbol{A} \cap \boldsymbol{B})-\boldsymbol{n}(\boldsymbol{B} \cap \boldsymbol{C})-\boldsymbol{n}(\boldsymbol{A} \cap \boldsymbol{C})+\boldsymbol{n}(\boldsymbol{A} \cap \boldsymbol{B} \cap \boldsymbol{C}) \\
& 92 \%=42 \%+51 \%+68 \%-30 \%-28 \%-36 \%+\boldsymbol{n}(\boldsymbol{A} \cap \boldsymbol{B} \cap \boldsymbol{C}) \\
& \boldsymbol{n}(\boldsymbol{A} \cap \boldsymbol{B} \cap \boldsymbol{C})=25 \%
\end{aligned}
$$

MITTAL COMMERCE CLASSES

The percentage of persons who read only one paper
$=1 \%+18 \%+29 \%=48 \%$
16. Ans. d

Explanation:
(a, a), (b, b), (c, c) \& R
So R is a reflexive relation
But $(a, b) \varepsilon \mathrm{R}$ and (b, a) $\notin \mathrm{R}$
Thus, R is not a symmetric relation.
Also, (a, b), $\mathrm{b}, \mathrm{c}) \in \mathrm{R} \Rightarrow(\mathrm{a}, \mathrm{c}) \notin \mathrm{R}$
Hence R is not a transitive relation
17. Ans. a

Explanation:
$\mathrm{n}(\mathrm{A}-\mathrm{B})=\mathrm{n}(\mathrm{A})-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$
$47=115-n(A \cap B)$
$n(A \cap B)=68$
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$=115+326-68=373$
18. Ans. a

Explanation:
Using declining balance depreciation
Declining Balance Depreciation Rate = 1 - (Salvage Value / Cost)^(1/Years)
Rearrange
Salvage value $=$ Cost $\times(1-\text { Depreciation rate })^{\wedge}$ Years
Salvage value $=10000 \times(1-10 \%)^{\wedge} 10=3,486.78$
19. Ans. b

Explanation:
$16000[(1+5 \%) 3-1]=2522$
20. Ans. b

Explanation:
The correct pattern is x 2-2.
So, 48 is wrong and must be replaced by ($26 \times 2-2$) i.e. 50.
21. Ans. d

Explanation:
Draw a figure as per given instruction in the question. We can see that according to
graph C is facing towards East.

22. Ans. c

Explanation:
Common Solution for the set:
In this type of linear arrangement, we find the fixed position all are facing north
Here Y is Exactly in the Middle and it is third to the left of U

1	2	3	4	5	6	7
			Y			U

W, cannot sit at any extreme end so, T is in $1^{\text {st }}$ place. W sits fifth to the right of T. W is in $6^{\text {th }}$ place

1	2	3	4	5	6	7
T			Y		W	U

Z is not an immediate neighbor of Y. so, only one place left for Z that is 2 .

1	2	3	4	5	6	7
T	Z		Y		W	U

Two people sit between Z and X, X is at $5^{\text {th }}$ place

1	2	3	4	5	6	7
T	Z		Y	X	W	U

The last place left for V .
From the given information we can make the following arrangement.

1	2	3	4	5	6	7
T	Z	V	Y	X	W	U

23. Ans. d

Explanation:
Mother in Law

24. Ans. d

Explanation:
Since X and Y both are the young-ones of Z. Hence either X and Y will be either sons or daughters of Z. Since Y is not the son of Z. Hence Y will be the daughter of Z.
25. Ans. a

Explanation:
Each letter is represented by a particular number, so using the codes already given,
$M=7$
$\mathrm{O}=2$
$L=4$
$E=9$
$K=5$
So, the code for MOLEK is 72495 .

MITTAL COMMERCE CLASSES

26. Ans. C

Explanation:
Given: Mode - Mean $=63$
We know the empirical relationship between mean, Median \& Mode i.e.
(Mode - Mean) $=3$ (Median - Mean)
Median - Mean $=\frac{63}{3}=21$
27. Ans. a

Explanation:
$b_{v u}=\frac{p}{q} \times b_{y x}$
$=\frac{-3}{2} \times-{ }_{1.2}={ }_{1.8}$
28. Ans. c

Explanation:
$\mathrm{np}-\mathrm{npq}=\frac{5}{9}$
$p=\frac{1}{3}, q=\frac{2}{3}$
Distribution is $\left(\frac{2}{3}+\frac{1}{3}\right)^{5}$
29. Ans. b

Explanation:
If lines coincides then the value of r is +-1 .
30. Ans. a

Explanation:
The regression line : ${ }^{-} \bar{y}^{=} b_{y x} \quad x^{-\bar{x}}$
or $y^{-} 8.8=1.24\left(x^{-} 5.5\right)$
$\Rightarrow \mathrm{y}=1.24 \mathrm{x}{ }^{+} 1.98$
31. Ans. b

Explanation :
$r_{R}=1-\frac{{ }_{6} \Sigma \boldsymbol{d}^{2}}{\boldsymbol{n}\left(\boldsymbol{n}^{2}-1\right)}$
$0.8={ }_{1}-\frac{6^{\Sigma} d^{2}}{990}$
$\Sigma_{d^{2}}=33$
Cor. $\Sigma \mathrm{d}^{2}=33-(7)^{2}+(9)^{2}=65$
Cor. $r_{R}={ }_{1}-\frac{6^{\times} 65}{990}$
$=0.61$

MITTAL COMMERCE CLASSES

32. Ans. d

Explanation:
$\mathrm{P}_{01}=\sqrt{\frac{\sum \mathrm{P}_{1} \mathrm{q}_{0}}{\sum \mathrm{P}_{0} \mathrm{q}_{0}} \mathrm{~K} \frac{\sum \mathrm{P}_{1} \mathrm{q}_{1}}{\sum \mathrm{P}_{0} \mathrm{q}_{1}}} \mathrm{x} 100=94.88$
33. Ans. d

Explanation:

$$
\begin{aligned}
& \text { Using Formula : Real wage }=\frac{\text { Money wage }}{\text { Price Index }} \times 100 \\
& \quad \Rightarrow 1680=\frac{\text { Money Wage }}{\left(\frac{215}{120} \times 100\right)} \times 100 \\
& \\
& \therefore \text { Money Wage }=\frac{215}{120} \times 1680=3010 \text { Rs. } \\
& \therefore \text { Loss of worker }=3010-3000=10 \text { Rs. }
\end{aligned}
$$

34. Ans. b

35. Ans. c

Explanation:

36. Ans. c

Explanation:
26
37. Ans. d

Explanation:
XC
38. Ans. a

Explanation:
The most appropriate diagram to represent 5 year plan outlay of India in different economic sectors is Pie diagram

MITTAL COMMERCE CLASSES

39. Ans. d

Explanation:
GM cannot be determined is data set have positive and negative observations
40. Ans. a

Explanation:
$\sigma_{x}=3$
$y=5-2 x$
$\sigma_{y}=\frac{2}{1} \times 3=6$
$v y=36$
41. Ans. c

Explanation:
$\sum d x^{2}=250$

$$
n=10
$$

$x=50$
$\sigma=\sqrt{\frac{250}{10}}=5$
$C . V=\frac{5}{50} \times 100=10$
42. Ans. a

Explanation:
$5 x^{+} 7 y^{-} 22=0$
$6 x^{+} 2 y^{-} 22=0$
$r=\sqrt{\frac{10}{42}}$
$b y x=\frac{-5}{7}$
$b x y=-\frac{2}{6} \quad-\frac{5}{7}=-\frac{\sqrt{\frac{10}{42}} \times \sqrt{15}}{\sigma_{x}}$

$$
\sigma_{x}=2.646
$$

43. Ans. b

Explanation:
byx $=0.80$
$p=\frac{1}{-3}$
$q=\frac{5}{-2}$
byx $=\frac{q}{p} x b u v$

MITTAL COMMERCE CLASSES

$0.80=\frac{\frac{-5}{2}}{\frac{-1}{3}} \times$ buv \quad buv $=0.1066$
44. Ans. d

Explanation:
$n p=3$
$\sqrt{n p q}={ }_{1.5}$
$3 q=2.25$
$q=\frac{2.25}{3} \quad q=0.75, p=0.75$ so $\mathrm{n}=12$
45. Ans. b

Explanation:
Mean $=6 \times \frac{1}{2}=3$
$S D=\sqrt{6 \times \frac{1}{2} \times \frac{1}{2}}=1.22$
46. Ans. b

Explanation:
$n p=\frac{10}{3}$
$2 n_{c_{2}} p^{2} q^{n-2}=n_{c_{3}} p^{3} q^{n^{-3}}$
$\frac{2^{\times} n!}{2!n^{-} 21} q=\frac{n!}{3!n^{-} 3!} p$
$\frac{q}{n^{-2}}=\frac{p}{6}$
$6 q=n p^{-} 2 p$
$6 q=\frac{10}{3}-2 p$
$6 q=\frac{10^{-} 6 p}{3}$
$18 q=10{ }^{-} 6 p$
$18{ }^{-} 18 p=10{ }^{-} 6 p$
$12 p=8$
$p=\frac{2}{3} \quad q=\frac{1}{3}$
$n \times \frac{2}{3}=\frac{10}{3}$
$n=5$
$5_{c_{0}}\left(\frac{2}{3}\right)^{0}\left(\frac{1}{3}\right)^{5}+5_{c_{1}}\left(\frac{2}{3}\right)^{1}\left(\frac{1}{3}\right)^{4}+5_{c_{2}}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{3}$
$\frac{1}{3^{5}}+5 \times \frac{2}{3^{5}}+\frac{10^{\times} 4}{3^{5}}$
$\frac{1^{+} 10^{+} 40}{3^{5}}=\frac{51}{3^{5}}=\frac{51}{243}=\frac{17}{81}$
47. Ans. c

Explanation:

$$
\begin{aligned}
& \int \frac{d x}{x^{2}+2 x-3}=\int \frac{d x}{x^{2}+2 x^{+} 1-4} \\
& =\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2+} 1\right)^{2}-2^{2}} \\
& \cdots \int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left(\frac{x^{-} a}{x^{+} a}\right)+c \\
& =\frac{1}{4} \log \frac{x^{-} 1}{x^{+} 3}+c
\end{aligned}
$$

48. Ans. b

Explanation:
$T_{5}=a+4 d=14$
$T_{12}=a+11 d=35$
On solving equation (i) and (ii)
$a=2$
49. Ans. d

Explanation:
$\mathrm{S}_{\mathrm{n}}=\sum_{n\left(n^{+}{ }^{+}\right)}$
$\mathrm{s}_{\mathrm{n}}=\sum^{\prime} n^{2}+\sum^{\prime} n$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+\frac{n\left(n^{+} 1\right)}{2}$
$=\frac{n\left(n^{+} 1\right)\left(n^{+} 2\right)}{3}$
50. Ans. d

Explanation:
$\mathrm{A}=\frac{R}{r}=\left[\left(1^{+} r\right)^{n-} 1\right]$
$796870=\frac{R}{0.1}\left[\left(1^{+} 0.1\right)^{10-} 1\right]$
$R=50,000$

MITTAL COMMERCE CLASSES

51. Ans. C

Explanation:
No of diagonals in a polygon with n sides
$={ }^{\mathrm{n}} \mathrm{C}_{2}-\mathrm{n}=\frac{n\left(n^{-} 3\right)}{2}$
52. Ans. b

Explanation:
Here, we have an A.P. with $a=3,00,000 d=10,000$
And $n=20$
Using the sum formula , we get,
$S_{20}=\frac{20}{2}=\left[6,00,000{ }^{+} 19 \times 10,000\right]$
$=79,00,000$
53. Ans. b

Explanation:

$$
\begin{aligned}
& \mathrm{a}=3, \mathrm{r}=\frac{1}{2} \\
& \mathrm{~S}_{\mathrm{n}}=\frac{a\left(1^{-} r^{n}\right)}{1^{-} r} \\
& \frac{3069}{512}=\frac{3\left[1-\frac{1}{2^{n}}\right]}{1-\frac{1}{2}} \\
& \frac{3069}{3072}=1^{-\frac{1}{2^{n}}} \\
& \frac{1}{2^{n}}=\frac{1}{1024} \\
& \mathrm{n}=10
\end{aligned}
$$

54. Ans. C

Explanation:
$a=132, l=468$
$\mathrm{I}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$468=132+(n-1)(12)$
$\mathrm{n}=29$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}\left(a^{+} l\right)$
$S_{29}=\frac{29}{2}(132+468)=8700$
55. Ans. c

Explanation:

	Grade I	Grade II

MITTAL COMMERCE CLASSES

Plant A	6	3	≤ 120
Plant B	4	10	≤ 180

$6 x+3 y \leq 120$
$4 x+10 y \leq 180$
56. Ans. c

Explanation:
AXB $=\{(2,4),(2,5),(3,4),(3,5)\}$
$B \times C=\{(4,5),(4,6)(5,5)(5,6)\}$
$(A X B) \cup(B X C)=\{(2,4),(2,5),(3,4),(3,5),(4,5),(4,6)(5,5)(5,6)\}$
57. Ans. C

Explanation:

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{n} \\
& \frac{25}{16} \mathrm{P}=P\left(1+\frac{r}{100}\right)^{2} \\
& \left(\frac{5}{4}\right)^{2}=\left(1+\frac{r}{100}\right)^{2} \\
& \frac{5}{4}=1+\frac{r}{100} \\
& \mathrm{r}=25 \%
\end{aligned}
$$

58. Ans. d

Explanation:
first part $=x$, second part $=2600-x$
$\frac{x^{\times}{ }_{3} \times 5}{100}=\frac{(2600-x)^{\times} 6^{\times} 4}{100}$
$15 x=62,400-24 x$
$39 x=62,400$
$\mathrm{X}=1,600$
Second part $=2,600-1,600$
= Rs. 1,000
59. Ans. c

Explanation:
$A=P\left(1+\frac{5}{100}\right)^{n}$
$A={ }_{P}\left(\frac{21}{20}\right)^{n}$
$\frac{P}{A}=\left(\frac{20}{21}\right)^{n}$
60. Ans. a

Explanation:

MITTAL COMMERCE CLASSES

$\log { }_{t}^{a+} \log { }_{t}^{b+} \log _{t}{ }^{c}=\log _{t}^{z}$
$\log { }_{t}^{(a b c))}=\log _{t}^{z}$
$Z=a b c$
61. Ans. a

Explanation:
Present value of growing property $=\frac{R}{i^{-} g}$

$$
=\frac{60}{0.07^{-} 0.05}=3000
$$

62. Ans. b

Explanation:
No. of such ways $=\frac{\left(n^{-} 1\right)!}{2}$

$$
=\frac{5!}{2}
$$

63. Ans. a

Explanation:
If $(b+c),(c+a),(a+b)$ are in A.p.
Then $2(c+a)=b+c+a+b$
$2 b=a+c$
64. Ans. c

Explanation:
${ }^{n} p_{r}=r!{ }^{n} C_{r}$
$2880=r!\times 120$
$r!=24$
$r=4$
65. Ans. d

Explanation:

$$
\begin{aligned}
\operatorname{fog}(x) & =\mathrm{f}[g(x)] \\
& =\mathrm{f}[2 x-3] \\
& =(2 x-3)^{2}+3(2 x-3)+1 \\
& =4 x^{2}-6 x+1 \\
\operatorname{fog}(-1) & =4+6+1=11
\end{aligned}
$$

66. Ans. d

Explanation:
Number of permutations of n distinct objects taken r at a time when a particular
object is not taken in any arrangement is ${ }^{n^{-1}} p_{r}$
No. of arrangements $={ }^{14} p_{6}$

MITTAL COMMERCE CLASSES

67. Ans. c

Explanation:

(C)
68. Ans. b

Explanation:
STSTRUM $=\frac{119}{7}=17$
1234567
$\because \quad$ STEP $=\quad \frac{60}{4}=15$
1234
69. Ans. d

Explanation:
STUDENT
70. Ans. a

Explanation:
AMNESTY $=$ NMAEYTS
BRIGADE $=$ IRBGEDA
71. Ans. c

Explanation:

5
72. Ans. c

Explanation:

MITTAL COMMERCE CLASSES

73. Ans. c

Explanation:

74. Ans. d

Explanation:

75. Ans. d

Explanation:

76. Ans. c

Explanation:

Brother
77. Ans. a

Explanation:
The colour of a flower is an example of An attribute.
78. Ans. b

Explanation:
The data are known to be Secondary if the data, as being already collected, are used by a different person or agency.
79. Ans. b

Explanation:
Mutually exclusive classification is usually meant for a continuous variable
80. Ans. c

Explanation:

$0-10$	15	
$10-20$	23	
$20-30$	27	$\mathrm{SO}=19+16=35$
$30-40$	19	
$40-50$	16	

MITTAL COMMERCE CLASSES
CA FOUNDATION- MOCK TEST
81. Ans. a

Explanation:
$\bar{x}={ }_{A}+\frac{\sum_{d x}}{n}$
82. Ans. c

Explanation:
New Mean $=\frac{\bar{x}}{\bar{\alpha}} \quad$ New Mean $=\frac{\bar{x}}{\alpha}^{+} 10$
83. Ans. d

Explanation:
$25000=\frac{n_{1} \times 27000{ }^{+}{ }_{2}{ }^{\times} 17000}{n_{1}{ }^{+} n_{2}}$ SO $n_{1}=80 \% \quad n_{2}=20 \%$
84. Ans. b

Explanation:

$$
\bar{x}_{c o m}=\frac{K^{\bar{x}+} 10 K \bar{y}}{11 K} \quad \bar{x}_{c o m}=\frac{\bar{x}+10 y}{11}
$$

85. Ans. b

Explanation:
For ordering shoes of various sizes for resale, mode size will be more appropriate
86. Ans. a

Explanation:

$$
\frac{15^{+} 25}{2}=20 \quad S D=\frac{\text { range }}{2}=\frac{10}{2}={ }_{5}
$$

87. Ans. a

Explanation:
52, 56, 68, 70, 75, 80, 82
Median $=70$

X	$\mid X-$ $M \mid$
52	18
56	14
68	2
70	0
75	5
80	10
82	12
	61

$M D=\frac{61}{7}=8.71428$

MITTAL COMMERCE CLASSES

MD Coefficien $t=\frac{8.71428}{70} \times 100$
88. Ans. b

Explanation:

$$
\begin{aligned}
& 40 \times 100=4000-50+40=\frac{3990}{100}=39.90 \\
& \sigma=\sqrt{\left.\frac{\sum \times 2}{\bar{x}^{n}}-\bar{x}^{2}\right)^{2}} \\
& 5.1=\sqrt{\frac{\sum \times 2}{100}-1600} \\
& \mathrm{Ex}^{2}=162 \\
& \sigma=\sqrt{\frac{161701}{100}-1592.01} \\
& \sigma=5
\end{aligned}
$$

89. Ans. a

Explanation:
$A=\frac{2}{5}$
$A^{\prime}=\frac{3}{5}$
$B=\frac{7}{10} \quad B^{\prime}=\frac{3}{10}$
$A B^{\prime}{ }^{+} B A$
$\frac{2}{5} \times \frac{3}{10}+7 / 10 \times \frac{3}{5}$
SO $\quad \frac{6}{50}+\frac{21}{50}=\frac{27}{50}$
90. Ans. a

Explanation:
$\frac{13}{52} \times \frac{12}{51}=\frac{1}{17}$
91. Ans. c

Explanation:
$\frac{5 c_{2}}{7 c_{2}}=\frac{10}{21}$
92. Ans. c

Explanation:
$P=2$
$P=2(1-P)$
$P=2-2 P$
$3 P=2$
$P=2 / 3$

MITTAL COMMERCE CLASSES

$$
\begin{aligned}
& q=\frac{1}{3} \\
& { }_{c}^{5}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{2} \\
& =\frac{80}{243}
\end{aligned}
$$

93. Ans. a

Explanation:
$A=\frac{1}{5}$
$A^{\prime}=\frac{4}{5}$
94. Ans. c

Explanation:

X	P	$P X$
1	$1 / 3$	$1 / 3$
2	$1 / 3$	$2 / 3$
3	$1 / 3$	$3 / 3$

$$
\begin{aligned}
& \frac{1}{3}+\frac{2}{3}+\frac{3}{3} \\
& =\frac{6}{3}=2
\end{aligned}
$$

95. Ans. b

Explanation:
$4_{C_{0}} p^{0} q^{4}=\frac{16}{81}$
$q=\frac{2}{3} \quad p=\frac{1}{3}$
$4_{C_{4}}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{0}=\frac{1}{81}$
96. Ans. d

Explanation:
$m=150 \times \frac{2}{100}=3 p\left(\right.$ more than 2) $=1-\frac{e^{-3} 3^{0}}{0!}-\frac{e^{-3} 3^{1}}{1!}-\frac{e^{-3} 3^{2}}{2!}$
$=1-\frac{e^{-3} 3^{0}}{0!}-\frac{e^{-3} 3^{1}}{1!}-\frac{e^{-3} 3^{2}}{2!}=0.58$
97. Ans. C

Explanation :
The symbol ${ }^{\phi}(a)$ indicates the area of the standard normal curve between ${ }^{-\infty}$ To a

MITTAL COMMERCE CLASSES

98. ANS. B

Explanation:
$\log \left(a+\sqrt{a^{2}+1}\right)+\log \left(a+\sqrt{a^{2}+1}\right)^{-1}$
$=\log \left(a+\sqrt{a^{2}+1}\right)-\log \left(a+\sqrt{a^{2}+1}\right)$
$=0$
99. ANS. D

Explanation:
$E\left(x^{-} \mu\right)^{2}$ and $E\left[x^{-} E(x)\right]^{2}$ both are variance.
100. ANS. A

Explanation:
Largest angle $\quad=\frac{32}{90} \times 360=128{ }^{\circ}$
Smallest angle $\quad=\frac{17}{90} \times 360=68^{\circ}$
Difference $=60^{\circ}$

