Enown for Best Resuli

PAPER : COSTING
Answer to questions are to be given only in English except in the case of candidates who have opted for Hindi Medium. If a candidate who has not opted for Hindi Medium. His/her answer in Hindi will not be valued.

Question No. 1 is compulsory.
Candidates are also required to answer any Four questions from the remaining Five Questions.
In case, any candidate answers extra question(s)/sub-question(s) over and above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.
Wherever necessary, suitable assumptions may be made and disclosed by way of note.

Answer 1:

(a) Difference between Minimum lead time Maximum lead time $=4$ days

Max. lead time - Min. lead time $=4$ days
Or, Max. lead time $=$ Min. lead time +4 days.
Average lead time is given as 6 days i.e.
$\frac{\text { Max.leadtime }+ \text { Minleadtime }}{2}=6$ days
Putting the value of (i) in (ii),
$\frac{\text { Min lead time }+4 \text { days }+ \text { Minleadtime }}{2}=6$ days
Or, Min. lead time +4 days + Min. lead time $=12$ days
Or, 2 Min. lead time $=8$ days
Or, Minimum lead time $=\frac{8 \text { days }}{2} \quad=4$ days
Putting this Minimum lead time value in (i), we get
Maximum lead time $=4$ days +4 days $=8$ days
(i) Maximum consumption per day:

Re-order level $=\mathrm{Max}$. Re-order period \times Maximum Consumption per day
$1,60,000$ units $=8$ days \times Maximum Consumption per day
Or, Maximum Consumption per day $=\frac{1,60,000 \text { units }}{8 \text { days }}=20,000$ units $\}\{2.5 \mathrm{M}\}$
(ii) Minimum Consumption per day:

Maximum Stock Level $=$
Re-order level + Re-order Quantity - (Min. lead time \times Min. Consumption per day)
Or, $1,90,000$ units $=1,60,000$ units $+90,000$ units $-(4$ days \times Min. Consumption per day)
Or, 4 days \times Min. Consumption per day $=2,50,000$ units $-1,90,000$ units
Or, Minimum Consumption per day $=\frac{60,000 \text { units }}{4 \text { days }}=15,000$ units $\left.\} \mathbf{2} .5 \mathbf{~ M}\right\}$ nown for Best Resull

Answer:

(b)

Labour Turnover by Replacement Method $=\frac{\text { No. of workers replaced during the quarter }}{\text { Average no. of workers onrollduring the quarter }}$
Or, $0.03 \quad=\frac{\text { No. of workers replaced during the quarter }}{(990+1,010) \div 2}$
Or, No. of workers replaced during the quarter $=0.03 \times 1,000=30$ workers
(i) Labour Turnover by Separation Method

$$
\begin{aligned}
& =\frac{\text { No. of workers separated during the quarter }}{\text { Average no. of workers onrollduring the quarter }} \times 100 \\
& =\frac{\text { Worker at begining }+ \text { Freshrecruitment }+ \text { Replacements }- \text { Workers at closing }}{\text { Average no. of workers onrollduring the quarter }} \times 100 \\
& \left.=\frac{990+40+30-1,010}{(990+1,010) \div 2} \times 100=\frac{50 \text { wor ker s }}{1,000 \text { wor ker } \mathrm{S}} \times 100=5 \%\right\}\{2.5 \mathrm{M}\}
\end{aligned}
$$

(ii) Labour Turnover by Flux Method
$=\frac{\text { No. of workers (Separated }+ \text { Replaced }+ \text { Fresh Re cruitment) during the quarter }}{\text { Average no. of workers onroll during the quarter }} \times 100$
$\left.=\frac{50+30+40}{(990+1,010) \div 2} \times 100 \quad=\frac{120 \text { wor ker } \mathrm{S}}{1,000 \text { wor ker } \mathrm{s}} \times 100=12 \%\right\}\{2.5 \mathrm{M}\}$

Answer:

(c) Efficiency Ratio can be obtained by dividing the activity ratio by capacity ratio as follows:-

$$
\begin{aligned}
\text { Efficiency Ratio } & =\frac{\text { Activity ratio }}{\text { Capacity ratio }} \times 100 \\
& \left.=\frac{104 \%}{96 \%} \times 100=108.33 \%\right\}\{4 \mathrm{M}\}
\end{aligned}
$$

The inter - relationship is shown below:

Activity Ratio	$=\frac{\text { Std.hoursfor actualproduction }}{\text { BudgetedHours }} \times 100$
Capacity ratio	$=\frac{\text { Actualworkinghours }}{\text { Budgetedhours }} \times 100$
Efficiency ratio	$=\frac{\text { Std.hoursfor actualproduction }}{\text { Actualhoursworked }} \times 100$
i.e. Efficiency Ratio	$=\frac{\text { Activity Ratio }}{\text { Capacity Ratio }}$
	$=\frac{\text { Std.hoursfor actualproduction }}{\text { Budgetedhours }} \times \frac{\text { Budgetedhours }}{\text { Actualhours worked }}$
	$=\frac{\text { Std.hoursfor actualproduction }}{\text { Actualhoursworked }} \times 100$

Activity Ratio $=$ Capacity Ratio \times Efficiency Ratio
(Activity Ratio Answer =1 M)

Answer:

(d) (i) Calculation of cost driver rate:

Cost pool	Budgeted overheads (Rs.)	Cost driver	Cost driver rate (Rs.)
Material procurement	$18,42,000$	1,200	$\mathbf{1 , 5 3 5 . 0 0}$

Material handling	$8,50,000$	1,240	$\mathbf{6 8 5 . 4 8}$
Maintenance	$24,56,000$	17,550	$\mathbf{1 3 9 . 9 4}$
Set-up	$9,12,000$	1,450	$\mathbf{6 2 8 . 9 7}$
Quality control	$4,42,000$	1,820	$\mathbf{2 4 2 . 8 6}$

(1/2 M each Bold)
(ii) Calculation of cost for the batch:

Particulars	Amount (Rs.)	Amount (Rs.)
Material cost		$24,62,000.00$
Wages		$4,68,500.00$
Overheads:		
- Material procurement (Rs. $1,535 \times 56$ orders)	$85,960.00$	
- Material handling (Rs. 685.48×84 movements)	$57,580.32$	
- Maintenance (Rs. $139.94 \times 1,420$ hours)	$1,98,714.80$	
- Set-up (Rs. 628.97×60 set-ups)	$37,738.20$	
- Quality control (Rs. 242.86×18 inspections)	$4,371.48$	$3,84,364.80$
Total Cost		$33,14,864.80$
No. of units		7,600
Cost per units		436.17

(Each Bold 1/4 M)

Answer 2:

(a) (i) Material Variances

Budget			Std. for actual			Actual		
Quantity (Meter)	Price (Rs.)	Amount (Rs.)	Quantity (Meter)	Price (Rs.)	Amount (Rs.)	Quantity (Meter)	Price (Rs.)	
1	60	60	10,000	60	$6,00,000$	11,400	58	
	$6,61,200$							

Material Cost Variance

$$
=6,00,000-6,61,200
$$

Material Price Variance $=(60-58) 11,400$
Material Usage Variance

$$
=(10,000-11,400) 60
$$

$=(S Q \times S P-A Q \times A P)$
$=$ Rs. 61,200 (A) $\quad\{1 \mathrm{M}\}$
$=(S P-A P) A Q$ = Rs. 22,800 (F) $\quad\{1 \mathrm{M}\}$
$=(S Q-A Q) S P$
$=$ Rs. $84,000(\mathrm{~A}) \quad\{1 \mathrm{M}\}$
(ii) Variable Overheads variances

Variable overhead cost Variance
= Standard variable overhead - Actual Variable Overhead
$=(10,000$ units $\times 2$ hours \times Rs. 10$)-2,24,400=$ Rs. $24,400(A)\}\{\mathbf{M}\}$
Variable overhead Efficiency Variance
$=($ Standard Hours - Actual Hours) \times Standard Rate per Hour
Let Actual Hours be ' X ', then:

$$
\begin{array}{lll}
(20,000-X) \times 10 & =4,000(\mathrm{~A}) & \\
2,00,000-10 \mathrm{X} & =-4,000 & \\
X & =2,04,000 \div 10 & \\
\text { Therefore, Actual Hours }(\mathrm{X}) & =\mathbf{2 0 , 4 0 0} & \} \mathbf{1 ~ M}\}
\end{array}
$$

Variable overhead Expenditure Variance
$=$ Variable Overhead at Actual Hours - Actual Variable Overheads
$=20,400 \times$ Rs. $10-2,24,400=$ Rs. $20,400(A) \quad\{1 \mathrm{M}\}$
(iii) Labour variances

Budget			Std. for actual		Actual		
Hours	Rate	Amount	Hours	Rate	Amount	Hours	Rate
Amount							

	(Rs.)	(Rs.)		(Rs.)	(Rs.)		(Rs.)	(Rs.)
2	20	40	20,000	20	$4,00,000$	20,400	22^{*}	$4,48,800$

*Actual Rate $=$ Rs. $4,48,800 \div 20,400$ hours $=$ Rs. $22 \quad\{1 \mathrm{M}\}$
Labour Cost Variance $=(\mathbf{S H} \times \mathbf{S R})-(\mathbf{A H} \times \mathrm{AR})$
$=4,00,000-4,48,800=$ Rs. $48,800(\mathrm{~A}) \quad\}\{1 \mathrm{M}\}$
Labour Rate Variance $=(\mathbf{S R}-\mathrm{AR}) \times \mathrm{AH}$
$=(20-22) \times 20,400=$ Rs. 40,800 (A)
Labour Efficiency Variance $=(\mathbf{S H}-\mathrm{AH}) \times \mathbf{S R}$
$=(20,000-20,400) \times 20=$ Rs. $8,000(A) \quad\} 1 \mathbf{~ M}\}$

Answer:

(b) Store Ledger of Aditya Ltd. (Weighted Average Method)

Date	Receipts			Issues			Balance of Stock		
Feb.	$\begin{array}{r} \text { Qty } \\ (\mathrm{kg} .) \end{array}$	$\begin{aligned} & \text { Rate } \\ & \text { (Rs.) } \end{aligned}$	Amount (Rs.)	$\begin{gathered} \text { Qty } \\ \text { (kg.) } \end{gathered}$	$\begin{aligned} & \text { Rate } \\ & \text { (Rs.) } \end{aligned}$	Amount (Rs.)	$\begin{gathered} \text { Qty } \\ \text { (kg.) } \end{gathered}$	$\begin{aligned} & \text { Rate } \\ & \text { (Rs.) } \end{aligned}$	Amount (Rs.)
1	-						1,200	475.00	5,70,000
5		-		975	475.00	4,63,125	225	475.00	1,06,875
6	3,500	460.00	16,10,000				3,725	460.91	17,16,875
7		-		2,400	460.91	11,06,175	1,325	460.91	6,10,700
9	475	460.91	2,18,932	-			1,800	460.91	8,29,632
15	1,800	480.00	8,64,000	-			3,600	470.45	16,93,632
17		-		140	480.00	67,200	3,460	470.07	16,26,432
20	-	-		1,900	470.07	8,93,133	1,560	470.06	7,33,299
28	-	-	-	180*	470.06	84,611	1,380	470.06	6,48,688

* 180 kgs . is abnormal loss, hence it will be transferred to Costing Profit \& Loss A/c. \}(1.6 M)

Answer 3:
(a) Statement Showing "Budgeted Cost per unit of the Product"

Activity	Activity Cost (Budgeted) (Rs.)	Activity Driver	No. of Units of Activity Driver (Budget)	Activity Rate (Rs.)	Deposits	Loans	Credit Cards
ATM Services	8,00,000	No. of ATM Transaction	2,00,000	4.00	6,00,000	---	2,00,000
Computer Processing	10,00,000	No. of Computer processing Transaction	20,00,000	0.50	7,50,000	1,00,000	1,50,000
Issuing Statements	20,00,000	No. of Statements	5,00,000	4.00	14,00,000	2,00,000	4,00,000
Customer Inquiries	3,60,000	Telephone Minutes	7,20,000	0.50	1,80,000	90,000	90,000
Budgeted Cost	41,60,000				29,30,000	3,90,000	8,40,000
Units of Product (as estimated in the budget period)					58,600	13,000	14,000
Budgeted Cost per unit of the product					50	30	60
(Each bold 1/10 M)							

Working Note

Activity	Budgeted Cost (Rs.)	Remark
ATM Services:		
(a) Machine Maintenance	4,00,000	- All fixed, no change.
(b) Rents	2,00,000	- Fully fixed, no change.
(c) Currency Replenishment Cost	2,00,000	- Doubled during budget period.
Total	8,00,000	
Computer Processing	2,50,000	- Rs. 2,50,000 (half of Rs. 5,00,000) is fixed and no change is expected. - Rs. 2,50,000 (variable portion) is

	Total	$\begin{array}{r} 7,50,000 \\ \mathbf{1 0 , 0 0 , 0 0 0} \end{array}$	expected to increase to three times the current level.
Issuing Statements	Total	$\begin{array}{r} 18,00,000 \\ \underline{2}, 00,000 \\ \hline \end{array}$ 20,00,000	- Existing. - 2 lakh statements are expected to be increased in budgeted period. For every increase of one lakh statement, one lakh rupees is the budgeted increase.
Computer Inquiries	Total	$\begin{array}{r} 3,60,000 \\ 3,60,000 \end{array}$	- Estimated to increase by 80\% during the budget period. (Rs. $2,00,000 \times 180 \%$)

(Each Bold 2 M)

Answer:

(b)

Journal Entries in Cost Books
Maintained on non-integrated system

		(Rs.)	(Rs.)
(i) Work-in-Progress Ledger Control A/c Factory	Dr.	5,50,000	
Overhead Control A/c	Dr.	1,50,000	
To Stores Ledger Control A/c			7,00,000
(Being issue of materials)			
(ii) Work-in Progress Ledger Control A/c Factory	Dr.	2,00,000	
Overhead control A/c	Dr.	40,000	
To Wages Control A/C			2,40,000
(Being allocation of wages and salaries)			
(iii) Factory Overhead Control A/c	Dr.	20,000	
To Costing Profit \& Loss A/c			20,000
(Being transfer of over absorption of overhead)			
Costing Profit \& Loss A/c	Dr.	10,000	
To Administration Overhead Control A/c			10,000
(Being transfer of under absorption of overhead)			

(Each Entry 2.5 M)

Answer 4:

(a)

Process III
Process Cost Sheet (FIFO Method)
Opening Stock: 2,000 units; Introduced: 53,000 units
Statement of Equivalent Production

Input		Output		Equivalent production					
Item	Units	Item	Units	Mat- A	(\%)	Mat- B	(\%)	Labour \& OHs.	(\%)
Opening stock	2,000	Work on opening WIP	2,000			400	20	800	40
Process II transfer	53,000	Introduced \& completed during the period (48,000-2000)	46,000	46,000	100	46,000	100	46,000	100
			48,000						
		Normal Loss							
		$\begin{aligned} & (2,000+53,000-5,000) \\ & \mathrm{x} \% \end{aligned}$	2,500						
		Closing WIP	5,000	5,000	100	3,500	70	2,500	50
			55,500	51,000		49,900		49,300	
		Abnormal Gain	500	500	100	500	100	500	100
	55,000		55,000	50,500		49,400		48,800	

(Each Bold 1/3M)
Statement of Cost for each Element

Element of cost	Cost (Rs.)	Equivalent Production	Cost per unit (Rs.)

Material A:			
Transfer from Process-II	$4,11,500$		
Less: Scrap value of Normal Loss (2,500 \times Rs. 3)	7,500		
	$4,04,000$	50,500	$\mathbf{8}$
Material B	$1,97,600$	49,400	$\mathbf{4}$
Wages	97,600	48,800	$\mathbf{2}$
Overheads	48,800	48,800	$\mathbf{1}$
	$7,48,000$		$\mathbf{1 5}$

(Each Bold 1/3 M)

Process Cost Sheet	
	(Rs.)
Opening WIP (for completion):	
Material-B (400 units \times Rs. 4)	1,600
Wages (800 units \times Rs. 2)	1,600
Overheads (800 units \times Rs. 1)	800
	4,000
Introduced and completely processed during the period (46,000 units \times Rs. 15)	6,90,000
Closing WIP:	
Material- A (5,000 units \times Rs. 8)	40,000
Material- B (3,500 units \times Rs. 4)	14,000
Wages (2,500 units \times Rs. 2)	5,000
Overheads (2,500 units \times Rs. 1)	2,500
	61,500
Abnormal Gain (500 units \times Rs. 15)	7,500

(Each Bold 1/3 M)

Process III A/c						
Particulars Units Amount Particulars Units Amount To Balance b/d 2,000 25,750 By Normal Loss 2,500 7,500 To Process II A/c 53,000 $4,11,500$ By Process IV A/c (Rs. $6,90,000$ + Rs. $4000+$ Rs. 25,750$)$ 48,000 $7,19,750$ To Direct Material $1,97,600$ By Balance c/d 5,000 61,500 To Direct Wages 97,600 To Production OH 48,800 To Abnormal Gain 500 7,500 55,500 $7,88,750$ 55,500 $7,88,750$						

(Each Bold 1/3 M)

Answer:

(b) Revised Sales Value $\left.=\frac{\text { Desired Contribution }}{\text { Revised P/VRatio* }}=\frac{0.40}{0.25}=1.6\right\}\{4 \mathrm{M}\}$

This means sales value to be increased by 60% of the existing sales.
*Revised P/V Ratio $=\frac{\text { Revised Contribution }}{\text { Revised Selling Price }}=\frac{0.80-0.60}{0.80}=0.25$ \{1 M
Required Sales Quantity $\left.=\frac{\text { Desired Contribution }}{\text { Revised P/VRatio*×Revised Selling Price }}=\frac{0.40}{0.25 \times 0.80}=2\right\}\{\mathbf{1} \mathbf{~ M}$
Therefore, Sales value to be increased by 60% and sales quantity to be doubled to offset the reduction in selling price.

Proof:

Let selling price per unit is Rs. 10 and sales quantity is 100 units.
Data before change in selling price:
(Rs.) Enown for Best Resull

Sales (Rs. 10×100 units)	1,000
Contribution (40\% of 1,000)	400
Variable cost (balancing figure)	$\mathbf{6 0 0}$

(Bold 1 M)

Data after the change in selling price:

Selling price is reduced by 20% that means it became Rs. 8 per unit. Since, we have to maintain the earlier contribution margin i.e. Rs. 400 by increasing the sales quantity only. Therefore, the target contribution will be Rs. 400.
The new P/V Ratio will be

	(Rs.)
Sales	8.00
Variable cost	6.00
Contribution per unit	2.00
P/V Ratio	$\mathbf{2 5 \%}$

(Bold 1 M)
Sales Value $\left.=\frac{\text { DesiredContribution }}{\text { Revised P/VRatio }}=\frac{₹ 400}{0.25}=₹ 1,600 \quad \boldsymbol{\{ 1} \mathbf{~ M}\right\}$
Sales quantity $=\frac{\text { Sales value }}{\text { Selling price per unit }}=\frac{₹ 1,600}{₹ 8}=200$ units $\left.\boldsymbol{\{ 1} \mathbf{M}\right\}$

Answer 5:

(a) Total direct wages
$=$ Rs. $42,000+$ Rs. $54,000+$ Rs. $48,000=$ Rs. $1,44,000$
Percentage absorption of production overhead on the basis of direct wages
$=\frac{2,88,000}{1,44,000} \times 100=200 \%$
(i)

Process-I A/c

Particulars	Units	Amt.(Rs.)	Particulars	Units	Amt.(Rs.)
To Materials	$\mathbf{7 , 0 0 0}$	$\mathbf{1 , 4 0 , 0 0 0}$	By Normal loss (5\% of 7,000 units)	$\mathbf{3 5 0}$	$\mathbf{3 , 5 0 0}$
To Other materials	-	$\mathbf{6 2 , 0 0 0}$	By Process-II*	$\mathbf{6 , 6 0 0}$	$\mathbf{3 , 3 5 , 9 5 5}$
To Direct wages	-	$\mathbf{4 2 , 0 0 0}$	By Abnormal loss* *	50	$\mathbf{2 , 5 4 5}$
To Direct expenses	-	$\mathbf{1 4 , 0 0 0}$			
To Production OH (200\% of Rs. 42,000)	-	84,000			
	$\mathbf{7 , 0 0 0}$	$\mathbf{3 , 4 2 , 0 0 0}$		$\mathbf{7 , 0 0 0}$	$\mathbf{3 , 4 2 , 0 0 0}$

* Cost per unit $=\frac{\text { Rs. }(3,42,000-3,500)}{(7,000-350) \text { units }}=$ Rs. 50.9022
(Each Bold 1/6 M)

Process-II A/c					
Particulars	Units	Amt.(Rs.)	Particulars	Units	Amt.(Rs.)
To Process-I A/c	6,600	3,35,955	By Normal loss (10% of 6,600 units)	660	6,600
To Other materials	-	1,36,000	By Process-III**	5,200	5,63,206
To Direct wages	-	54,000	By Abnormal loss**	740	80,149
To Direct expenses	-	16,000			
To Production OH (200% of Rs 54,000)	-	1,08,000			
	6,600	6,49,955		6,600	6,49,955

(Each Bold 1/6 M)
${ }^{* *}$ Cost per unit $=\frac{\text { Rs. }(6,49,955-6,600)}{(6,600-660) \text { units }}=$ Rs. 108.3089

Process-III A/c					
Particulars	Units	Amt.(Rs.)	Particulars	Units	Amt.(Rs.)
To Process-I A/c	5,200	5,63,206	By Normal loss (5% of 5,200 units)	260	2,600
To Other materials	-	84,200	By Product-X**	4,800	8,64,670
To Direct wages	-	48,000			
To Direct expenses	-	14,000	By Product-Z\#	600	21,000
To Production OH (200% of Rs. 48,000)	-	96,000	(Rs. 35×600 units)		
To Abnormal gain***	460	82,864			
	5,660	8,88,270		5,660	8,88,270

(Each Bold 1/6 M)
${ }^{* * *}$ Cost per unit $=\frac{\text { Rs. }(8,05,406-2,600-21,000)}{(5,200-260-600) \text { units }}=$ Rs. 180.1396
\# Realisable value = Rs. $135-(85+15)=$ Rs. 35
(ii)

By-Product Process A/c

Particulars	Units	Amt. (Rs.)	Particulars	Units	Amt. (Rs.)
To Process-III A/c	600	21,000	By Product-Z	600	$\mathbf{8 1 , 0 0 0}$
To Processing cost	-	51,000			
To Selling expenses	-	9,000			
	600	81,000		600	$\mathbf{8 1 , 0 0 0}$

(Each Bold 1/6 M)

Answer:

(b)
Production Budget for the year 2013 by Quarters
(i)

	II	III	IV	Total		
	Sales demand(Unit)	18,000	22,000	25,000	27,000	92,000
I	Opening Stock	6,000	7,200	8,100	8,700	30,000
II	70% of Current Quarter's Demand	12,600	15,400	17,500	18,900	64,400
III	30% of Following Quarter's Demand	6,600	7,500	8,100	7,400	29,600
IV	Total Production(II \&III)	19,200	22,900	25,600	26,300	94,000
V	Closing Stock (I + IV - Sales)	7,200	8,100	8,700	8,000	32,000

*Balancing Figure
(Each bold 1/5 M)

$$
\text { (ii) } \quad \begin{aligned}
\text { Break Even Point } & =\text { Fixed Cost } \div \text { PV Ratio } \\
& =\text { Rs. } 2,20,000 \div 13.75 \%=\text { Rs. } 16,00,000 \text { or } 40,000 \text { units. } \\
\text { P/V Ratio } & \\
& =\text { (Rs. } 40-\text { Rs. } 34.50=\text { Rs. } 5.50) \div 40 \times 100=13.75 \%
\end{aligned}
$$

(Or, Break Even Point $=$ Fixed Cost \div Contribution $=$ Rs. $2,20,000 \div$ Rs. $5.50=40,000$ Units)
Total sales in the quarter II is 40,000 equal to BEP means BEP achieved in II quarter.
($4 \mathrm{M}=$ Any 40,000 Units)

Answer 6:

(a) INSTALLATION OF COSTING SYSTEM

As in the case of every other form of activity, it should be considered whether it would be profitable to have a cost accounting system. Management of an organisation needs complete and accurate information to make decisions. A wellestablished Costing system should provide all relevant information as and when required by management as well as various stakeholders.
Before setting up a system of cost accounting the under mentioned factors should be studied:
(a) Objective: The objective of costing system, for example whether it is being introduced for fixing prices or for establishing a system of cost control.
(b) Nature of Business or Industry: The Industry in which business is operating. Every business industry has its own peculiarity and objectives. According to its cost information requirement cost accounting methods are
followed. For example, an oil refinery maintains process wise cost accounts to find out cost incurred on a particular process say in crude refinement process etc.
(c) Organisational Hierarchy: Costing system should fulfill the information requirements of different levels of management. Top management is concerned with the corporate strategy, strategic level management is concerned with marketing strategy, product diversification, product pricing etc. Operational level management needs the information on standard quantity to be consumed, report on idle time etc.
(d) Knowing the product: Nature of product determines the type of costing system to be implemented. The product which has by-products requires costing system which accounts for by-products as well. In case of perishable or short self- life products, marginal costing is appropriate to know the contribution and minimum price at which products could be sold.
(e) Knowing the production process: A good costing system can never be established without the complete knowledge of the production process. Cost apportionment can be done on the most appropriate and scientific basis if a cost accountant can identify degree of effort or resources consumed in a particular process. This also includes some basic technical know-how and process peculiarity.
(f) Information synchronisation: Establishment of a department or a system requires substantial amount of organisational resources. While drafting a costing system, information needs of various other departments should be taken into account. For example, in a typical business organisation accounts department needs to submit monthly stock statement to its lender bank, quantity wise stock details at the time of filing returns to tax authorities etc.
(g) Method of maintenance of cost records: The manner in which Cost and Financial accounts could be inter-locked into a single integral accounting system and how the results of separate sets of accounts i.e. cost and financial, could be reconciled by means of control accounts.
(h) Statutory compliances and audit: Records are to be maintained to comply with statutory requirements and applicable cost accounting standards to be followed.
(i) Information Attributes: Information generated from the Costing system should possess all the attributes of information i.e. complete, accurate, timeliness, relevant etc. to have an effective management information system (MIS).
(1 M for each point for any five points)

Answer:

(b) Objectives of Budgetary Control System

1. Portraying with precision the overall aims of the business and determining targets of performance for each section or department of the business.
2. Laying down the responsibilities of each of the executives and other personnel so that everyone knows what is expected of him and how he will be judged. Budgetary control is one of the few ways in which an objective assessment of executives or department is possible.
3. Providing a basis for the comparison of actual performance with the predetermined targets and investigation of deviation, if any, of actual performance and expenses from the budgeted figures. This naturally helps in adopting corrective measures.
4. Ensuring the best use of all available resources to maximise profit or production, subject to the limiting factors. Since budgets cannot be properly drawn up without considering all aspects usually there is good coordination when a system of budgetary control operates.
5. Co-ordinating the various activities of the business, and centralising Enown for Best Resull
control and yet enabling management to decentralise responsibility and delegate authority in the overall interest of the business.
6. Engendering a spirit of careful forethought, assessment of what is possible and an attempt at it. It leads to dynamism without recklessness. Of course, much depends on the objectives of the firm and the vigour of its management.
7. Providing a basis for revision of current and future policies.
8. Drawing up long range plans with a fair measure of accuracy.
9. Providing a yardstick against which actual results can be compared.
(1 M for each point for any five points)

Answer:

(c) Assumptions underlying E.O.Q. : The calculation of economic order of material to be purchased is subject to the following assumptions :
(i) Ordering cost per order and carrying cost per unit per annum are known and they are fixed.
(ii) Anticipated usage of material in units is known.
(iii) Cost per unit of the material is constant and is known as well.
(iv) The quantity of material ordered is received immediately i.e. the lead time is zero.
(1.25 M each point)

Answer:

(d) Product Cost vis-à-vis Period cost

Product costs are those costs that are identified with the goods purchased or produced for resale. In a manufacturing organisation they are attached to the product and that are included in the inventory valuation for finished goods, or for incompleted goods. Product cost is also known as inventoriable cost. Under absorption costing method it includes direct material, direct labour, direct expenses, directly attributable costs (variable and non variable) and other production (manufacturing) overheads. Under marginal costing method Product Costs includes all variable production costs and the all fixed costs are deducted from the contribution.
\}\{2.5 M\}
Periods costs are the costs, which are not assigned to the products but are charged as expense against revenue of the period in which they are incurred. General Administration, marketing, sales and distributor overheads are recognized as period costs.
\}\{2.5 M\}

