(GCF-2,3,4,5,6,7,8,10 VCF-1,2, VDCF-1,2 \& SCF-1,2) DATE: 29.11.2021 MAXIMUM MARKS: 100

BUSINESS MATHEMATICS, REASONING \& STATISTICS

1. Ans. b

Explanation:
$C I=60000\left(1+\frac{6}{100}\right)\left(1+\frac{8}{100}\right)\left(1+\frac{10}{100}\right)-60,000={ }_{R s} .15,556.80$
2. Ans. C

Explanation:
1 Rs .: 50 P : 25 P
$4 x, 5 x, 6 x$
$4 x+\frac{250 x}{100}+\frac{150 x}{100}=120$
$x=15$
The number of coins of 25 paisa $=6 \times 15=90$
3. Ans. c

Explanation:
$A: B=4: 5]^{\times} 7$
$B: C=7: 8{ }^{\times} 5$
$A: B: C=28: 35: 40$
4. Ans. a

Explanation:
$\frac{1}{1+\frac{a^{x}}{a^{y}}}+\frac{1}{1+\frac{a^{y}}{a^{x}}}$
$=\frac{a^{y}}{a^{y+} a^{x}}+\frac{a^{x}}{a^{x+} a^{y}}=\frac{a^{x+} a^{y}}{a^{x+} a^{y}}=1$
5. Ans. b

Explanation:
$A_{A}={ }_{P}\left(1+\frac{r}{100}\right)^{n}$
$2000={ }_{P}\left(1+\frac{8}{100}\right)^{4}$
$P=$ Rs. 1470.06
6. Ans. a

Explanation:
$P=\frac{R}{r}\left[1^{-}\left(1^{+} r\right)^{-n}\right]$
$5,00,000=\frac{R}{.08}\left[1-(1+0.8)^{-3}\right]$
$R=$ Rs. 1,94,016.75
7. Ans. b

Explanation:
The number of straight lines

$$
\begin{aligned}
& ={ }^{n} c_{2}-{ }^{x} c_{2}+{ }_{1} \\
& ={ }^{15} c_{2}-{ }^{6} c_{2}+{ }_{1}=91
\end{aligned}
$$

8. Ans. c

Explanation:
The no. of arrangements $=$ Total no. of arrangements - Two 'o's come together-

$$
=\frac{6!}{2!}-5!=240
$$

9. Ans. d

Explanation:
Number of ways $={ }^{6} c_{3} \times{ }^{5} c_{2}=200$
10. Ans. d

Explanation:
Different words can be formed $=\frac{11!}{4!4!2!}$
$S=4, P=2, I=4$
11. Ans. c

Explanation:
$\frac{n!}{(n-5)!}=20 \times \frac{n!}{(n-3)!}$
$(n-3)(n-4)(n-5)!=20(n-5)!$ Use option.
12. Ans. b

Explanation:
It is an AP with $a=-111$ and $d=4$
$T_{n}=a+(n-1) d$
$=-111+(n-1) 4$
$=-111+4 n-4$
$=4 n-115$
Tn >0
$4 n-115>0$
$\mathrm{n}>28 \frac{3}{4}$
\because The smallest integer greater than $28 \frac{3}{4}$ is 29 .

MITTAL COMMERCE CLASSES

13. Ans. b

Explanation:

$$
\begin{aligned}
\log _{10} 80 & =\log _{10}\left(\begin{array}{l}
8 \\
\boldsymbol{x} \\
10
\end{array}\right) \\
& =\log _{10}(2 \times x \quad 4 \times x \quad 10) \\
& =\log _{10} 2^{+} \log _{10} 4^{+} \log _{10} 10 \\
& =x^{+} y^{+} 1
\end{aligned}
$$

14. Ans. d

Explanation:
$\log _{2} \log _{3}(x)=3^{1}=3$
$\log _{3}^{x}=2^{3}=8$
$x=3^{8}=6561$
15. Ans. a

Explanation:
$\frac{2^{n+3}-10 \times 2^{n+1}}{2^{n^{+1} \times} 6}$
$=\frac{2^{n \times} 2^{3-} 10^{\times} 2^{n \times} 2}{2^{n+1} \times 2^{\times} 6}$
$=\frac{8^{-} 20}{12}=\frac{{ }^{-} 12}{12}={ }^{-} 1$
16. Ans. b

Explanation:
$f(x)=\frac{1}{x^{-} 1}$
if $x=1 f(x)$ will be undefined
$A_{A}={ }_{R}-\left\{\begin{array}{l}\text { 1 }\end{array}\right\}$
17. Ans. c

Explanation:

$$
\begin{aligned}
& f(x)={ }^{x} c_{2} \\
&=\frac{x\left(x^{-} 1\right)}{2} \\
&=\frac{x^{2}-x}{2} \\
& f^{\prime}(x)=\frac{2 x^{-} 1}{2} \\
& f^{\prime}(3)=\frac{2^{\times} 3^{-} 1}{2}=\frac{5}{2}
\end{aligned}
$$

MITTAL COMMERCE CLASSES

18. Ans. b

Explanation:

$$
\begin{aligned}
\propto-\beta & =\sqrt{(\alpha+\beta)^{2}-4 \propto \beta} \\
& =\sqrt{(7)^{2}-4(-9)}=\sqrt{85}
\end{aligned}
$$

19. Ans. d

Explanation:
x^{2-} (sum of roots $) x^{+}$product of roots $=0$
$\boldsymbol{x}^{2}-(2-\sqrt{3}+2+\sqrt{3}) \boldsymbol{x}+(2-\sqrt{3}) \quad(2+\sqrt{3})=0$
$x^{2}-4 x+1=0$
20. Ans. a

Explanation:
$a=5,00,000, d=15,000$
$\boldsymbol{S}_{\boldsymbol{n}}=\frac{\boldsymbol{n}}{2}[2 \boldsymbol{a}+(\boldsymbol{n}-1) \boldsymbol{d}]$
$=\frac{10}{2}[2 \times 5,00,000+(10-1) 15,000]$
$=$ Rs. $56,75,000$
21. Ans. a

Explanation:
No. of ways that can be formed by using the word 'BANANA' $=\frac{6!}{3!2!}=60$
No. of ways in which two N comes together $=\frac{5!}{3!}=20$
\because Required No. of ways $=60-20=40$
22. Ans. b

Explanation:
Standard Deviation ${ }^{(\sigma)}=\sqrt{\text { Variance }}$
$=\sqrt{100}=10$
\because Mode $=3$ Median - 2 Mean
$29=\left(3^{\times} 23\right)^{-} 2$ Mean
Mean $=\left(69^{-29)} / 2^{=} 20\right.$
\because Coefficient of variation $(C V)=\overline{\bar{x}}^{\sigma} \times 100$

$$
\mathrm{CV}=\frac{10}{20} \times 100=50 \%
$$

23. Ans. c

Explanation:
Change in origin does not change S.D. Thus SD is k.

MITTAL COMMERCE CLASSES

24. Ans. a

Explanation:
$X^{-}-Y$
${ }^{+} \mathrm{R}-\mathrm{S}^{+} \quad$ Uncle
25. Ans. a

Explanation:

26. Ans. a

Explanation:
Given that,
$6300=P\left(1+\frac{2 R}{100}\right)$
.(i)
$7875=P\left(1+\frac{15 R}{400}\right)$
$\because T=3 \frac{9}{12}=\frac{15}{4}$ years
$\frac{\text { (ii) }}{(\mathrm{i})} \Longrightarrow \frac{\left(1+\frac{15 \mathrm{R}}{400}\right)}{\left(1+\frac{2 \mathrm{R}}{100}\right)}=\frac{7875}{6300}$
$\Longrightarrow \frac{400+15 \mathrm{R}}{400+8 \mathrm{R}}=\frac{7875 \div 1575}{6300 \div 1575}=\frac{5}{4}$
$\Longrightarrow 4(400+15 R)=5(400+8 R)$
$\Longrightarrow 1600+60 \mathrm{R}=2000+40 \mathrm{R}$
$\Longrightarrow 60 R-40 R=2000-1600$
$\Longrightarrow 20 \mathrm{R}=400$
$\therefore R=20 \%$ (Ans)
27. Ans. b

Explanation:
$2,00,000=A\left[\frac{(1+5 \%)^{20}-1}{5 \%}\right]$
$A=6048.5=6049$
28. Ans. c

Explanation:
$4!\times 5!=2880$
29. Ans. c

Explanation:
$11 \%=825$
$P=7500$
30. Ans. c

Explanation:
$P \times\left((1+5 \%)^{20}-1\right)=1640$
$P=16,000$
31. Ans. a

Explanation:
$B \cap C=\{5\}$
$A x(B \cap C)=\{(2,5),(3,5)\}$
32. Ans. b

Explanation:
$5,000\left[(1+1.5 \%)^{20}(1+4 \%)^{16}-1\right]=\mathrm{Cl}$
$\mathrm{Cl}=7613.17$
33. Ans. a

Explanation:
$\mathrm{np}=3 \quad ; \quad \mathrm{npq}=2$
Now $3 \times q=2 \rightarrow Q=2 / 3$
And, $\mathrm{P}=1-\mathrm{Q}=1-2 / 3=1 / 3$
and, $\mathrm{n} \times 1 / 3=3 \rightarrow \mathrm{n}=9$
Now, $\left(\frac{2}{3}+\frac{1}{3}\right)^{9}$
34. Ans. b

Explanation:
$1000\left[\frac{\left(1^{+} 14 \%\right)^{5}-1}{14 \%}\right]=$ Future Value
F.V. $=6610 /-$
35. Ans. b

Explanation:
$\left(2^{6}-1\right) \times\left(2^{4}-1\right)=945$
36. Ans. c

Explanation:
$\mathrm{P}_{2000,2003}=\frac{\mathrm{P}_{2003}{ }^{\times}{ }^{100}}{\mathrm{P}_{2000}}$
$=\frac{60^{\times} 100}{15}=400 \%$
37. Ans. c

Explanation:
$\mathrm{D}=\mathrm{P}\left(\frac{R}{100}\right)^{2}$
$768=P\left(\frac{8}{100}\right)^{2}$
$P=1,20,000$
38. Ans. d

Explanation:

MITTAL COMMERCE CLASSES

$\mathrm{E}=\left[\left(1+\frac{r}{100}\right)^{n}-1\right] \times 100$

$$
=\left[\left(1+\frac{6}{200}\right)^{2}-1\right\rfloor \times 100=6.09 \%
$$

39. Ans. a

Explanation:
$\mathrm{CI}=\mathrm{P}\left(1+\frac{r}{100}\right)^{n}-P$
$=5,000\left(1+\frac{4}{100}\right)-5,000$
$=200$
$C I=5,000\left(1+\frac{2}{100}\right)^{2}-5,000$
$=202$
D $=202-200=$ Rs. 2
40. Ans. b

Let the sum borrowed be x. Then,
$\left(\frac{x^{\times} 6^{\times} 2}{100}\right)+\left(\frac{x^{\times}{ }^{\times} 9^{\times} 3}{100}\right)+\left(\frac{x^{\times}{ }_{14}{ }^{\times} 4}{100}\right)={ }_{11,400}$
$\Leftrightarrow\left(\frac{3 \mathrm{x}}{25}+\frac{27 \mathrm{x}}{100}+\frac{14 \mathrm{x}}{25}\right)=11,400 \Leftrightarrow \frac{95 \mathrm{x}}{100}={ }_{11,400} \Leftrightarrow \mathrm{x}=\left(\frac{11,400{ }^{\times} 100}{95}\right)={ }_{12,000}$
Hence, Sum borrowed Rs.12,000
41. Ans. d

Explanation:
$\mathrm{P}=1 / 8 ; \mathrm{n}=10 ; \mathrm{q}=7 / 8$
$P($ at least 2) $=1-P(0)-P(1)$

$$
=1-10 c_{c_{0}} p^{0} q^{9}-10{ }_{c_{1}} p^{1} q^{8}
$$

$$
=0.3611
$$

42. Ans. a

Explanation:
$\mathrm{n}=4 ; \mathrm{p}=1 / 2 \mathrm{q}=1 / 2$
$\mathrm{P}($ at least 2 H$)=\mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(4)$
${ }^{4} c_{2} p^{2} q^{2}+{ }^{4} c_{3} p^{3} q^{1}+{ }^{4} c_{4} p^{4} q^{0}$
43. Ans. d

Explanation:
$P(7)=\frac{1}{8}$
44. Ans. c

Explanation:

$$
\begin{array}{ll}
H+2 & =J \\
O+2 & =Q \\
N+2 & =P \\
E+2 & =G \\
Y+2 & =A \\
\text { Now, } & \\
& V-2=T \\
C-2 & =A \\
T-2 & =R \\
I-2 & =G \\
G-2 & =E \\
V-2 & =T \\
U-2 & =S
\end{array}
$$

45. Ans. C

Explanation:
MINK - $\mathrm{M}=\mathrm{INK}$
46. Ans. d

Explanation:
$\mathrm{C}+2=\mathrm{E}+2=\mathrm{G}+2=1$
Then, J180P is wrong.
47. Ans. b

Explanation:
$S_{\infty}=\frac{a}{1-r}=\frac{\sqrt{3}}{1-\frac{1}{3}}=\frac{3 \sqrt{3}}{2}$
48. Ans. c

Explanation:

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{n} \\
& \frac{25}{16} P^{=}{ }_{P\left(1+\frac{r}{100}\right)^{2}}^{\left(\frac{5}{4}\right)^{2}=\left(1+\frac{r}{100}\right)^{2}} \\
& \frac{5}{4}=1_{1}+\frac{r}{100} \\
& \mathrm{r}=25 \%
\end{aligned}
$$

49. Ans. b

Explanation:
$\frac{10000 \times 2 \times \mathrm{x}}{100}+\frac{6000 \mathrm{x} \mathrm{3} \mathrm{x} \mathrm{r}}{100}=1900$
$r=5 \%$

MITTAL COMMERCE CLASSES

50. Ans. b

Explanation:
No. of observation = frequency
51. Ans. b

Explanation:
$\log \left(a+\sqrt{a^{2}+1}\right)+\log \left(a+\sqrt{a^{2}+1}\right)^{-1}$
$=\log \left(a+\sqrt{a^{2}+1}\right)-\log \left(a+\sqrt{a^{2}+1}\right)$
$=0$
52. Ans. b

Explanation:

Correct direction SE
But best option South
53. Ans. c

Explanation : Event A: Person aged 50 years will remain alive after 20 years Event B: Person aged 60 years will remain alive after 20 years
$\therefore P(A)=\frac{5}{9+5}=\frac{5}{14}$ and $P(B)=\frac{6}{8+6}=\frac{6}{14}$
$\therefore P(A \cup B)=\frac{5}{14}+\frac{6}{14}-\frac{5}{14} \times \frac{6}{14}=\frac{31}{49}$
54. Ans. b

Explanation :
$\mathrm{r}_{\mathrm{R}}=1-\frac{6 \sum \mathrm{~d}^{2}}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)}$
$0.8=1-\frac{6 \sum \mathrm{~d}^{2}}{990}$
$\sum \mathrm{d}^{2}=33$
Cor. $\quad \sum \mathrm{d}^{2}=33-(7)^{2}+(9)^{2}=65$
Cor. $\mathrm{r}_{\mathrm{R}}=1-\frac{6 \times 65}{990}$
$=0.61$
55. Ans. b

Explanation:
${ }^{+} \mathrm{R}$ —— K

56. Ans. a

Explanation:

+ D — J

57. Ans. a

Explanation:
$S D=\left|\frac{a}{c}\right| \times \sigma_{x}=\left|\frac{a}{c}\right| \times \sigma$
58. Ans. c

Explanation:
B is the son of C but C is not the mother of B means C is the father of B.
A is married to C means A is the mother of B.
F is the brother of B means F is the son of A and C.
D is daughter of A means D is daughter A and C. A is the mother and hence female. B is the son and hence male. C is the husband and hence male. D is the daughter and hence female. E is the brother and hence male. F is the son and hence male.
So, there are four males.
59. Ans. a

Explanation:
$\int\left(x^{3}+3^{x}\right) d x$

$$
\left[e^{\log x}=x\right]
$$

$\frac{1}{4} x^{4}+\frac{3}{x}_{\log 3}{ }^{+} c$
60. Ans. b

Explanation:
$x^{2 a-3} y^{2 a}=x^{6-a} y^{5 a}$
$x^{3 a-9}=y^{3 a}$
Taking logarithm
(3a-9) $\log x=3 a \operatorname{logy}$
$3 a \log x-3 a \log y=9 \log x$
$a \log \frac{x}{y}=3 \log x$
61. Ans. b

Explanation:
1, 10, 37, 118

MITTAL COMMERCE CLASSES

$1 \times 3+7=10$
$10 \times 3+7=37$
$37 \times 3+7=118$
$118 \times 3+7=361$
62. Ans. a

Explanation:
HM is the reciprocal of the AM of reciprocal of observations.
$H . M=\frac{n}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{n}}$
63. Ans. c

Explanation:
Suitable form of average in this case is HM because it used for average rate.
64. Ans. a

Explanation:
$Q 2^{-} Q 1 \Rightarrow Q 3^{-} Q 2$
65. Ans. b

Explanation:
$D 2=\frac{2\left(n^{+} 1\right)}{10} t h=\frac{n^{+} 1}{5} t h$ So it is 20 th Percentile
66. Ans. a

Explanation:
$10 \times 2.5=25$ and marks of passed is $281-25$ Avg. is $=\frac{256}{40} \Rightarrow 6.4$
67. Ans. a

Explanation:
$\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$
68. Ans. c

Explanation:
$1,2,3,4 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . n \quad S D$ is $\sqrt{\frac{n^{2-1}}{12}}$
69. Ans. c

Explanation:
If events are mutually exclusive, then both events cannot occur at the same time.
70. Ans. a

Explanation:
$P\left(A^{1}\right)=1^{-} P(A)$

MITTAL COMMERCE CLASSES

$$
\begin{array}{r}
1-3 / 8 \\
=5 / 8
\end{array}
$$

71. Ans. a

Explanation:
$(2,3)(3,2)(1,4)(4,1) \quad$ SO $\quad \frac{4}{36}=\frac{1}{9}$
72. Ans. b

Explanation:

X	P	$P X$
5	$1 / 3$	$5 / 3$
6	$1 / 4$	$6 / 4$
7	$5 / 12$	$35 / 12$

$\frac{5}{3}+\frac{6}{4}+\frac{35}{12}$
$\begin{array}{lll}3 & 4 & 12\end{array}$
$\frac{20^{+} 18^{+} 35}{12}=6.08$
73. Ans. c

Explanation:
$\mu=0 \quad \sigma={ }_{1}$
74. Ans. c

Explanation:
The normal curve is symmetrical
75. Ans. c

Explanation:
Because of the symmetry of Normal distribution the median and the mode have the same value as that of the mean
76. Ans. d

Explanation:
If $X \& Y$ are two independent normal variates with means $\mu_{1} \& \mu_{2}$ and standard deviations
$\sigma_{1} \& \sigma_{2}$ respectively, then $\mathrm{X}+\mathrm{Y}$ follows Means $=\mu_{1}+\mu_{2}, \mathrm{~S} . \mathrm{D}=\sqrt{\sigma_{1}{ }^{2}+\sigma^{2}{ }^{2}}$
77. Ans. d

Explanation:
Coefficient of variation $=\frac{\text { S.D. }}{\bar{x}} \times 100$
$50=\frac{\text { S.D. }}{10} \times 100$
S.D. $=\frac{50^{\times} 10}{100}=5$
\cdots Variance $=(\text { S.D. })^{2}=5^{2}=25$

MITTAL COMMERCE CLASSES

78. Ans. a

Explanation:
Arrange the data in ascending order:
$x / 5, x / 3, x / 2, x$
$M=$ Simple Average of two middle terms

$$
M=\frac{\frac{x}{2}+\frac{x}{3}}{2}=10
$$

$\underline{x}+\underline{x}=20$
23
$\frac{5 x}{6}=20$
$x=24$
79. Ans. d

Explanation: $\sum \mathrm{x}=50 \mathrm{x} 80=4000$
After replacing correct observations $\sum \mathrm{x}=4000-28-69+82+96=4081$
Revised $\overline{\mathrm{x}}=\frac{4081}{50}=81.62$
80. Ans. b

Explanation:
G.M. $=\left(2 \times 2^{2} \times 2^{3} \times 2^{4} \times 2^{5} \times 2^{6}\right)^{1 / 6}$
$=2^{7 / 2}$
81. Ans. c

Explanation:
$y=19-\frac{5}{2} x$
byx $=\frac{-5}{2}$
82. Ans. b

Explanation:
$\mathrm{r}_{\mathrm{R}}=1-\frac{6 \sum \mathrm{~d}^{2}}{\mathrm{n}\left(\mathrm{n}^{2}-1\right)}$
$0.143=1-\frac{6 \times 48}{7(48)}=0.143$
83. Ans. b

Explanation:
Revised salary $=\frac{200}{110} \times 325=590.90$
It means worker is in loss.
84. Ans. c

Explanation:
For attributes, rank correlation is the best mehtod.
85. Ans. d

Explanation :
Regression coefficient are independent of change of origin but not scale (As per Fundamental Principle)
86. Ans. c

Explanation :
$b_{y x}=0.5, b_{x y}=B_{B, r}=0.1$
$r=\sqrt{b_{x y}{ }^{\times} b_{y x}}$
$0.1=\sqrt{0.5^{\times} B}$
$0.5 \mathrm{~B}=0.01$
$B=\frac{0.01}{0.5}=0.02$
87. Ans. c

Explanation:
Average age of 10 students $=20 \mathrm{yrs}$
The sum of age of 10 students $=20 \times 10=200 \mathrm{yrs}$
If two boys are increased
The total no of students $=10+2=12$
And average increased by 4 yrs
Then new average $=20+4=24$
The sum of age of 12 student $=24 \times 12=288$
The sum of age of two boys $=288-200=88$
Average age of two boys $=\frac{88}{2}=44$
88. Ans. d

Explanation:
$b_{x y}=\frac{2}{7} ; b_{y x}=\frac{-7}{2}$
Not Possible
89. Ans. b

Explanation:
Less than ogive \& more than Ogive intersect at a point called MEDIAN or we can say second quartile.
90. Ans. a

Explanation:

$H+1=I$	Now,	$N+1=O$
$E+1=F$	$O+1=P$	
$A+1=B$	$R+1=S$	
$L+1=M$	$T+1=U$	
$T+1=U$		
$H+1=I$		

91. Ans. a

Explanation:

92. Ans. b

Explanation:

93. Ans. a

Explanation:
The only daughter of woman's father is she herself. So, the person is woman's son, i.e. the woman is the person's mother. Hence, the answer is a.
94. Ans. d

Explanation:

95. Ans. d

Explanation:
$\mathrm{CI}=8000\left[(1+10 \%)^{2}(1+4 \%)=2067.2-1\right]$
SI $=8000 \times \frac{10}{100} \times \frac{12}{5}=1920$
Difference CI-SI $=147.2$
96. Ans. c

Explanation:

MITTAL COMMERCE CLASSES
97. Ans. b

Explanation:

98. Ans. b

Explanation:

A

$\mathrm{SE} \quad \mathrm{C}$
99. Ans. C

Explanation:

Answer- Sister
100. Ans. d

Explanation:

Answer-Daughter

