(GI-7, VI-VDI-SI-3)

DATE: 01.04.2022
MAXIMUM MARKS: 100
TIMING: 3¼ Hours

PAPER : COSTING

Answer to questions are to be given only in English except in the case of candidates who have opted for Hindi Medium. If a candidate who has not opted for Hindi Medium. His/her answer in Hindi will not be valued.

Question No. 1 is compulsory.
Candidates are also required to answer any Four questions from the remaining Five Questions.
In case, any candidate answers extra question(s)/sub-question(s) over and above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.
Wherever necessary, suitable assumptions may be made and disclosed by way of note.

Answer 1:
(a)
(i) Reorder Quantity (ROQ) = 1,196 kg. (Refer to working note)
(ii) Reorder level (ROL) $=$ Maximum usage \times Maximum re-order period
(iii) Maximum level $=$ ROL + ROQ $-($ Min. usage \times Min. re-order period $)$
$=3,600 \mathrm{~kg} .+1,196 \mathrm{~kg} .-(100 \mathrm{~kg} . \times 4$ weeks $)$
$=\quad 4,396 \mathrm{~kg}$.
(iv) Minimum level
$=$ ROL - (Normal usage \times Normal re-order period)
$=\quad 3,600 \mathrm{~kg} .-(275 \mathrm{~kg} . \times 6$ weeks $)$
$=\quad 1,950 \mathrm{~kg}$.
(v) Average stock level
$=\frac{1}{2}$ (Maximum level + Minimum level $)$
$=\quad \frac{1}{2}(4,396 \mathrm{~kg} .+1,950 \mathrm{~kg})=3,.173 \mathrm{~kg}$. 2

OR
$=\quad$ Minimum level $+\frac{1}{2}$ ROQ
$=\quad 1,950 \mathrm{~kg} .+\frac{1}{2} \times 1,196 \mathrm{~kg} . \quad=2,548 \mathrm{~kg}$.
\{Each Point 1 M\}
Working Note:
Annual consumption of raw material $(A)=(275 \mathrm{~kg} . \times 52$ weeks $) \quad=14,300 \mathrm{~kg}$.
Cost of placing an order (0) = Rs. 100
Carrying cost per kg. per annum (c xi) $=$ Rs. $10 \times 20 \%=$ Rs. 2
Economic order quantity $(\mathrm{EOQ})=\sqrt{\frac{2 A O}{C \times i}}$
$=\sqrt{\frac{2 \times 14,300 \mathrm{kgs.} \times \text { Rs. } 100}{R s .2}}=1,196 \mathrm{Kg}$. (Approx)

Answer:

(b) Labour Turnover Rate (Replacement method) $=\frac{\text { No. of worker } s \text { replaced }}{\text { Average No. of worker } s}$
Or, $\quad \frac{8}{100}$
$=\frac{36}{\text { Average No. of worker } s}$
$=450 \quad\{1 / 2 \mathrm{M}\}$

Or, Average No. of workers
Labour Turnover Rate (Separation method) $=\frac{\text { No. of worker s separated }}{\text { Average No. of worker } s}$
Or, $\quad \frac{6}{100}$
$=\frac{\text { No. of worker s separated }}{450}$
$=27\{\mathbf{~} \mathbf{1 / 2} \mathbf{~ M}\}$
Or, No. of workers separated
Labour Turnover Rate (Flux Method)
$=\frac{\text { No. of Separations }+ \text { No. of accession Joiningss })}{\text { Average No. of worker } s}$
$\begin{array}{ll}\text { Or, } \frac{14}{100} & =\frac{27+\text { No. of accessions(Joinings) }}{450} \\ \text { Or, } 100(27+\text { No. of Accessions }) & =6,300\end{array}$
Or, No. of Accessions = 36
(i) The No. of workers recruited and Joined $=36 \quad$ \}2 M \}
(ii) The no. of workers left and discharged $=27$ \}2 M\}

Answer:

(c) Journal entries are as follows:

*Cost Ledger Control A/c is also known as General Ledger Control A/c
\{Each Entry 1 M \}

Answer:

(d) Statement of Cost

	First three months (Rs.)	Remaining nine months (Rs.)	Total (Rs.)

	$\mathbf{3 7 , 5 0 0}$ units	$\mathbf{1 , 6 8 , 7 5 0}$ units	$\mathbf{2 , 0 6 , 2 5 0}$ units
Direct material	$18,75,000$	$84,37,500$	$1,03,12,500$
Direct employee cost	$\mathbf{6 , 0 0 , 0 0 0}$	$\mathbf{2 7 , 0 0 , 0 0 0}$	$\mathbf{3 3 , 0 0 , 0 0 0}$
Indirect - variable expenses	$\mathbf{3 , 7 5 , 0 0 0}$	$\mathbf{1 6 , 8 7 , 5 0 0}$	$\mathbf{2 0 , 6 2 , 5 0 0}$
Indirect - fixed expenses	$\mathbf{8 , 1 2 , 5 0 0}$	$\mathbf{2 4 , 3 7 , 5 0 0}$	$\mathbf{3 2 , 5 0 , 0 0 0}$
Indirect - semi-variable expenses			
For first three months @ Rs. 40,000 p.m.	$\mathbf{1 , 2 0 , 0 0 0}$		$\mathbf{1 , 2 0 , 0 0 0}$
$-\quad$ For remaining nine months @		$\mathbf{6 , 3 0 , 0 0 0}$	$\mathbf{6 , 3 0 , 0 0 0}$
\quad Rs. 70,000* p.m.	$\mathbf{3 7 , 8 2 , 5 0 0}$	$\mathbf{1 , 5 8 , 9 2 , 5 0 0}$	$\mathbf{1 , 9 6 , 7 5 , 0 0 0}$
Total cost	-		$\mathbf{1 0 , 0 0 , 0 0 0}$
Desired profit	-		$\mathbf{2 , 0 6 , 7 5 , 0 0 0}$
Sales value			$\mathbf{1 0 0 . 2 4}$
Average selling price per unit			

\{Each bold $1 / 4 \mathrm{M}$ \}
$\left.\begin{array}{l}\text { * Rs. } 40,000 \text { for } 50 \% \text { capacity + Rs. } 15,000 \text { for } 20 \% \text { increase in capacity + Rs. } 15,000 \text { for } 5 \% \\ \text { increase in capacity (because cost is increased for every } 20 \% \text { increase in capacity or part thereof) }\end{array}\right\}\{1 / 4 \mathrm{M}\}$
Answer 2:
(a) (i) Statement showing the allocation of support department costs to the sales departments (using the Direct Method)

Particulars	Basis of allocation	Sales department Corporate sales (Rs.)		Consumer sales (Rs.)	Administrative (Rs.)
		Information systems (Rs.)			
Cost incurred		$\mathbf{1 2 , 9 7 , 7 5 1}$	$\mathbf{6 , 3 6 , 8 1 8}$	$\mathbf{9 4 , 5 1 0}$	$\mathbf{3 , 0 4 , 7 2 0}$
Re-allocation of cost of administrative department	Number of employees $(6: 4:-:-)$	56,706	$\mathbf{3 7 , 8 0 4}$	$\mathbf{(9 4 , 5 1 0)}$	---
Re-allocation of costs of information systems department	Processing time (6:5:-:-)	$\mathbf{1 , 6 6 , 2 1 1}$	$\mathbf{1 , 3 8 , 5 0 9}$		---
Total		$\mathbf{1 5 , 2 0 , 6 6 8}$	$\mathbf{8 , 1 3 , 1 3 1}$		

\{Each bold 1/4 M\}
(ii) Ranking of support departments based on percentage of their services rendered to other support departments
> Administration support department provides $23.077 \%\left(\frac{21 \times 100}{42+28+21}\right)$ of its services to information system support department. Thus 23.077% of Rs. $94,510=$ Rs. 21,810. $\{1 / \mathbf{2} \mathbf{~ M}\}$
$>$ Information system support department provides 8.33% $\left(\frac{400}{2,400+2,000+400} \times 100\right)$ of its services to Administration support department. Thus 8.33% of Rs. $3,04,720=$ Rs. $25,383 . \quad\{\mathbf{1 / 2} \mathbf{~ M}\}$

Statement showing allocation of support costs
(By using step-down allocation method)

Particulars	Basis of allocation	Sales department		Support department	
	Corporate sales	Consumer sales	AdministrativeInformation systems.		
	(Rs.)	(Rs.)	(Rs.)	(Rs.)	
Cost incurred		$\mathbf{1 2 , 9 7 , 7 5 1}$	$\mathbf{6 , 3 6 , 8 1 8}$	$\mathbf{9 4 , 5 1 0}$	$\mathbf{3 , 0 4 , 7 2 0}$
Re-allocation of cost of administrative department	Number of employees (6:4::3)	$\mathbf{4 3 , 6 2 0}$	$\mathbf{2 9 , 0 8 0}$	$\mathbf{(9 4 , 5 1 0)}$	$\mathbf{2 1 , 8 1 0}$
Re-allocation of costs of information systems department	Processing time $(6: 5:-:-)$	$\mathbf{1 , 7 8 , 1 0 7}$	$\mathbf{1 , 4 8 , 4 2 3}$		$\mathbf{(3 , 2 6 , 5 3 0)}$
Total	$\mathbf{1 5 , 1 9 , 4 7 8}$	$\mathbf{8 , 1 4 , 3 2 1}$			

(Each Bold $1 / 4 \mathrm{M}$)
(iii) An alternative ranking is based on the rupee amount of services rendered to other service departments, using the rupee figures obtained under requirement (ii) This approach would use the following sequence of ranking.
> Allocation of information systems overheads as first (Rs.25,383 provided to administrative).
> Allocated administrative overheads as second (Rs.21,810 provided to information systems). $\{1 / 4 \mathrm{M}\}$
(iv) Working notes:
(1) Percentage of services provided by each service department to other service department and sales departments.

Particulars	Service departments		Sale departments	
	Administrative	Information system	Corporate Sales	Consumer Sales
Administrative	-	$\mathbf{2 3 . 0 8 \%}$	$\mathbf{4 6 . 1 5 \%}$	$\mathbf{3 0 . 7 7 \%}$
Information systems	$\mathbf{8 . 3 3 \%}$	-	$\mathbf{5 0 \%}$	$\mathbf{4 1 . 6 7 \%}$

(Each Bold $1 / 4$ M)
(2) Total cost of the support department: (By using simultaneous equation method). Let $A D$ and IS be the total costs of support departments Administrative and Information systems respectively. These costs can be determined by using the following simultaneous equations:

	$A D$	$=$	$94,510+0.0833$ IS
	IS	$=$	$3,04,720+0.2308 \mathrm{AD}$
Or,	AD	$=$	$94,510+0.0833\{3,04,720+0.2308 \mathrm{AD}\}$
Or,	AD	$=$	$94,510+25,383+0.01922 \mathrm{AD}$
Or,	0.98077 AD	$=$	$1,19,893$
Or,	AD	$=$	Rs.1,22,243 $\}\{1 / 4 \mathbf{~ M}\}$
and	IS	$=$	Rs.3,32,934 $\} 1 / 4 \mathbf{M}\}$

Statement showing the allocation of support department costs to the sales departments (Using reciprocal allocation method)

Particulars	Sales department	
	Corporate sales	Consumer sales

	(Rs.)	(Rs.)
Costs incurred	$12,97,751$	$6,36,818$
Re-allocation of cost administrative department (46.16\% and 30.77\% of Rs. 1,22,243)	56,427	37,614
Re-allocation of costs of information systems department (50\% and 41.67\% of Rs. 3,32,934)	$1,66,467$	$1,38,734$
Total	$\mathbf{1 5 , 2 0 , 6 4 5}$	$\mathbf{8 , 1 3 , 1 6 6}$

\{Each bold $1 / 4 \mathrm{M}$ \}

Answer:

(b) Calculation of cost per unit:

Particulars		Units	(Rs.)
Listed Price of Materials		5,000	2,50,000
Less: Trade discount @ 10\% on invoice price			$(25,000)$
			2,25,000
Add: CGST @ 6\% of Rs. 2,25,000			13,500
Add: SGST @ 6\% of Rs. 2,25,000			13,500
			2,52,000
Add: Toll Tax			5,000
Freight and Insurance			17,000
Commission and Brokerage Paid			10,000
Add: Cost of returnable containers:			
Amount deposited	Rs. 30,000		
Less: Amount refunded	Rs. 20,000		10,000
			2,94,000
Add: Other Expenses @ 2% of Total Cost $\left(\frac{R s .2,94,000}{98} \times 2\right)$			6,000
Total cost of material			3,00,000
Less: Shortage material due to normal reasons @ 20\%		1,000	-
Total cost of material of good units		4,000	3,00,000
Cost per unit (Rs. 3,00,000/4,000 units)			75

\{Each bold $1 / 4 \mathrm{M}$ \}

Note:

1. GST is payable on net price i.e., listed price less discount.
2. Cash discount is treated as interest and finance charges; hence it is ignored.
3. Demurrage is penalty imposed by the transporter for delay in uploading or off -loading of materials. It is an abnormal cost and not included.
4. Shortage due to normal reasons should not be deducted from cost to ascertain total cost of good units.
\{Each point $1 / 4 \mathrm{M}$ \}
Answer 3:
(a) Working Notes:
(i) Overhead recovery rate per direct labour hour:

Budgeted factory overheads : Rs. 6,75,000
Budgeted direct labour hours : 4,50,000

Overhead recovery rate

$$
\begin{aligned}
& =\quad \frac{\text { Budgeted factory overheads }}{\text { Budgeted direct labour hours }} \\
& =\quad \frac{\text { Rs. } 6,75,000}{4,50,000 \text { hours }} \\
& =\quad \text { Rs. } 1.50 \text { per direct labour }\} \mathbf{1 / 2} \mathbf{~ M \}}
\end{aligned}
$$

(ii) Direct wage rate per hour:

Direct labour cost of WIP : Rs. 3,000 (on 31st October 2021)
Direct labour hours of WIP : 1,200 hours
Direct wage rate per hour
Direct labour $\cos t$ on WIP
Direct labour hours on WIP

$$
\left.=\frac{\text { Rs. } 300}{1,200 \text { hours }}=R s .2 .50 \quad\right\}\{1 / 2 \mathrm{M}\}
$$

(iii) Total direct wages charged to production:

Total direct labour hours spent on production \times Direct wage rate per hour
$=28,200$ hours \times Rs. $2.50=$ Rs. 70,500 $\} \mathbf{1 / 2} \mathbf{~ M}\}$
(a) Material purchased during October, 2021

	(Rs.)
Payment made to creditors	$\mathbf{1 , 0 5 , 0 0 0}$
Add: Closing balance in the account of creditors for purchase	$\mathbf{1 5 , 0 0 0}$
Less: Opening balance	$\mathbf{(3 0 , 0 0 0)}$
Material Purchased	$\mathbf{9 0 , 0 0 0}$

(Each Bold 1/10 M)
(b) Cost of finished goods in October, 2021

	(Rs.)
Cost of goods sold during the month	$\mathbf{1 , 9 5 , 0 0 0}$
Add: Closing finished goods inventory	$\mathbf{6 6 , 0 0 0}$
Less: Opening finished goods inventory	$\mathbf{(7 5 , 0 0 0)}$
Cost of goods completed during the month	$\mathbf{1 , 8 6 , 0 0 0}$

(Each Bold 1/10 M)
(c) Overhead applied to production in October, 2021 $=28,200$ hours \times Rs. $1.50=$ Rs. 42,300$\}(1 / 10 \mathrm{M})$
(d) Balance of Work-in-Process on 31st October, 2021

	(Rs.)
Direct material cost	$\mathbf{6 , 0 0 0}$
Direct labour cost	$\mathbf{3 , 0 0 0}$
Overheads (Rs. $1.50 \times 1,200$ hours)	$\mathbf{1 , 8 0 0}$
	$\mathbf{1 0 , 8 0 0}$

(Each bold 1/10 M)
(e) Direct material consumed during October, $2021=$ Rs. 78,000 \}(1/10 M)
(Refer to following Accounts)

Work in Process Control A/c				
	(Rs.)			(Rs.)
To Balance b/d	6,000	By	Finished goods control A/c [Refer (b) above]	1,86,000
To Wages Control A/c [Refer working note (iii)]	70,500	By	Balance c/d [Refer (d) above]	10,800
To Factory OH Control A/c [Refer (c) above]	42,300			
To Material consumed (Balancing fig.)	78,000			
	1,96,800			1,96,800

(Each Bold 1/2 M)
(f) Balance of Stores Control Account on 31st October, 2021 = Rs. 66,000 (Refer to following Account) \}(1/10 M)

Stores Ledger Control Account			
	(Rs.)		(Rs.)
To Balance b/d	54,000	By Work-in-process Control A/c [Refer (e) above]	78,000
To Payables(Creditors) A/c [Refer (a) above\}	90,000	By Balance c/d (Balancing fig.)	66,000
	1,44,000		1,44,000

(Each bold $1 / 2 \mathrm{M}$)
(g) Over-absorbed or under-absorbed overheads for October, 2021:

Balance in Factory Overhead Account below showing that Rs. 2,700 is underabsorbed. \}(1/2 M)

Factory Overhead Account

	(Rs.)	(Rs.)	
To Bank A/c	$\mathbf{4 5 , 0 0 0}$	By Work-in-process Control A/c (Factory OH applied)	$\mathbf{4 2 , 3 0 0}$
		By Costing P/L A/c (Under- absorbed)	$\mathbf{2 , 7 0 0}$
	45,000		45,000

(Each bold 1/2 M)

Answer:

(b) Workings:

1. Normal working hours in a month $=$ (Daily working hours - lunch break) \times no. of days $=(8$ hours -0.5 hours $) \times 26$ days $=195$ hours $\}(1 / 4 \mathrm{M})$
2. Hours worked by Mr.Z = No. of normal days worked + Overtime + holiday/ Sunday worked
$=(21$ days $\times 7.5$ hours $)+(9.5$ hours +8.5 hours $)+(5$ hours +6 hours $)$
$=157.5$ hours +18 hours +11 hours $=186.50$ hours. $\}(1 / 4 \mathrm{M})$
(i) Calculation of earnings per day

Particulars	Amount (Rs.)
Basic salary (Rs. 1,000 $\times 26$ days)	26,000
Dearness allowance (20\% of basic salary)	5,200
	$\mathbf{3 1 , 2 0 0}$
House rent allowance (16\% of basic salary)	$\mathbf{4 , 1 6 0}$
Employer's contribution to Provident fund $(12 \% \times$ Rs. 31,200$)$	$\mathbf{3 , 7 4 4}$
Employer's contribution to Pension fund $(7 \% \times$ Rs. 31,200$)$	$\mathbf{2 , 1 8 4}$
	$\mathbf{4 1 , 2 8 8}$
No. of working days in a month (days)	$\mathbf{2 6}$
Rate per day	$\mathbf{1 , 5 8 8}$
Transport allowance per day	$\mathbf{5 0}$
Earnings per day	$\mathbf{1 , 6 3 8}$

(Each bold $1 / 2$ M)
(ii) Calculation of effective wage rate per hour of Mr. Z:

Particulars	Amount (Rs.)
Basic salary (Rs. 1,000 $\times 26$ days)	26,000
Additional basic salary for Sunday \& holiday (Rs. 1,000 $\times 2$ days)	2,000
Dearness allowance (20\% of basic salary)	5,600
	$\mathbf{3 3 , 6 0 0}$
House rent allowance (16\% of basic salary)	$\mathbf{4 , 4 8 0}$
Transport allowance (Rs. 50×23 days)	$\mathbf{1 , 1 5 0}$
Overtime allowance (Rs. $160 \times 2 \times 2$ hours)	$\mathbf{6 4 0}$
Employer's contribution to Provident fund $(12 \% \times$ Rs. 33,600)	$\mathbf{4 , 0 3 2}$
Employer's contribution to Pension fund (7\% \times Rs. 33,600)	$\mathbf{2 , 3 5 2}$
Total monthly wages	$\mathbf{4 6 , \mathbf { 2 5 4 }}$
Hours worked by Mr. Z (hours)	$\mathbf{1 8 6 . 5}$
Effective wage rate per hour	$\mathbf{2 4 8}$

(Each bold $1 / 2 \mathrm{M}$)
*(Daily Basic + DA) $\div 7.5$ hours
$=(1,000+200) \div 7.5=$ Rs. 160 per hour $\}(1 / 4 \mathrm{M})$
(iii) Calculation of wages to be charged to Job no. HT200
$=$ Rs. 248×100 hours $=$ Rs. 24,800$\}(1 / 4 \mathrm{M})$
Answer 4:
(a) (i)

Material Variances

	Budget			Std. for actual			Actual		
	Quantity	Price (Rs.)	Amount (Rs.)	Quantity	Price (Rs.)	Amount (Rs.)	Quantity	Price (Rs.)	Amount (Rs.)
Material	0.5	60	30	5,000	60	$3,00,000$	5,700	58	$3,30,600$

(Each bold 1/10 M)
Material Cost Variance $\quad=(S Q \times S P-A Q \times A P)$

3,00,000-3,30,600
Material Price Variance (60-58) 5,700
Material Usage Variance $(5,000-5,700) 60$
$=(S Q \times S P-A Q \times A P)$
$=$ Rs. 30,600 (A) $\quad\}(1 \mathrm{M})$
= (SP - AP) AQ
= Rs. 11,400 (F) \quad ($\mathbf{1 ~ M}$)
$=(S Q-A Q) S P$
$=$ Rs. 42,000 (A) \quad (1 M)
(ii) Variable Overheads variances

Variable overhead cost Variance $=$ (Standard variable overhead - Actual Variable Overhead)
Standard Variable Overheads: 10,000 units $\times 10=1,00,000$
(1,00,000-1,12,200) = Rs. 12,200(A) \}(1 M)
Variable overhead Efficiency Variance $=(S t a n d a r d$ Hours - Actual Hours) \times Standard Rate per Hour
Let Actual Hours be ' X '

$(10,000-X) \times 10$	$=2,000(A)$
$1,00,000-10 X$	$=-2,000$
X	$=1,02,000 \div 10$
Therefore, Actual Hours (X)	$=10,200$

Variable overhead Expenditure Variance = (Variable Overhead at Actual Hours - Actual Variable Overheads)
$10,200 \times 10-1,12,200=$ Rs. 10,200 (A) \}(1 M)
(iii) Labour variances

	Budget			Std. for actual			Actual		
	Hours	Rate (Rs.)	Amount (Rs.)	Hours	Rate (Rs.)	Amount (Rs.)	Hours	Rate (Rs.)	Amount (Rs.)
Labour	1	20	20	10,000	20	$2,00,000$	10,200	$\mathbf{2 2}$	$\mathbf{2 , 2 4 , 4 0 0}$

Actual Rate $=$ Rs. 2,24,400 $\div 10,200$ hours $=$ Rs. 22 \}(1/5 M)
Labour Cost Variance $=(S H \times S R)-(A H \times A R)$
$10,000 \times 20-10,200 \times 22=$ Rs. $24,400(A)\}(1 \mathrm{M})$
Labour Rate Variance
$=(S R-A R) \times A H$
(20-22) $\times 10,200$
$=$ Rs. 20,400 (A) \}(1 M)
Labour Efficiency Variance
$=(\mathbf{S H}-\mathbf{A H}) \times \mathbf{S R}$
$(10,000-10,200) \times 20$
$=$ Rs. 4,000 (A) \}(1 M)
Answer:
(b) Budgeted Production 30,000 hours $\div 6$ hours per unit $=5,000$ units $\}(1 \mathbf{~ M})$

Budgeted Fixed Overhead Rate $=$ Rs. $90,00,000 \div 5,000$ units $=$ Rs. 1,800 per unit $\}(\mathbf{1 / 2} \mathbf{~ M})$
$=$ Rs. $90,00,000 \div 30,000$ hours $=$ Rs. 300 per hour. $\}(1 / 2 \mathbf{~ M})$
(i) Material Cost Variance
$=($ Std. Qty. \times Std. Price) - (Actual Qty. \times Actual Price)
$=(4,800$ units $\times 10 \mathrm{~kg} . \times$ Rs. 200 $)-$ Rs. 1,05,00,000
$=$ Rs. $96,00,000-$ Rs. 1,05,00,000
=Rs. 9,00,000 (A) \}(2 M)
$=$ (Std. Hours \times Std. Rate) - (Actual Hours \times Actual rate)
$=(4,800$ units $\times 6$ hours \times Rs. 110$)-$ Rs. 31,00,000
$=$ Rs. 31,68,000 - Rs. 31,00,000
=Rs. 68,000 (F) \}(2 M)
(iii) Fixed Overhead Cost Variance $=($ Budgeted Rate \times Actual Qty) - Actual Overhead
$=($ Rs. $1,800 \times 4,800$ units $)-$ Rs. 94,00,000
$=$ Rs. 7,60,000 (A)
OR $\quad=$ (Budgeted Rate \times Std. Hours) - Actual Overhead
$=($ Rs. $300 \times 4,800$ units $\times 6$ hours $)-$ Rs. 94,00,000
$=$ Rs. 7,60,000 (A) \}(2 M)
(iv) Variable Overhead Cost Variance $=$ (Std. Rate \times Std. Hours) - Actual Overhead

$$
\begin{aligned}
& =(4,800 \text { units } \times 6 \text { hours } \times \text { Rs. } 200)-\text { Rs. } 58,60,000 \\
& =\text { Rs. } 57,60,000-\text { Rs. } 58,60,000 \\
& =\text { Rs. } 1,00,000(\mathrm{~A})\}(2 \mathrm{M})
\end{aligned}
$$

Answer 5:

(a) (i) Optimal order quantity i.e. E.O.Q.
$=\sqrt{\frac{2 \times 48,000 \times 1,350}{15}}=\sqrt{86,40,000}=2,939$ units $\}(1 \mathbf{~ M})$

Relevant Cost of this order quantity

$\begin{array}{ll}\text { Ordering cost }=\frac{48,000}{2,939}=16.33, \text { say } 17 \text { orders at Rs. 1,350 } & 22,950.00 \\ \text { Carrying Cost }=\frac{1}{2} \times 2,939 \times 15 & 22,042.50\end{array}$
Relevant cost

Relevant Cost of this order quantity
Ordering cost $=\frac{48,000}{2,263}=21.21$, say 22 orders at Rs. 800
1
Carrying cost $=-\times 2,263 \times 15$
2
Relevant cost

Differential cost $=44,992.50-34,572.50=$ Rs. $\mathbf{1 0 , 4 2 0} \boldsymbol{\}} \mathbf{\{ 1} \mathbf{~ M}\}$
(iii) In case of discount in purchase price, the total cost of Purchase cost, ordering cost and carrying cost should be compared.

Original offer at Rs. 80 per unit		Supplier offered at Rs. 72 per unit	
	Rs.	Rs.	
Purchase Cost $(48,000 \times 80)$	$38,40,000.00$	Purchase cost $(48,000 \times 72)$	$34,56,000.00$
Ordering cost	$22,950.00$	Ordering cost	0.00
Carrying cost	$22,042.50$	Carrying cost 1 $-\times 48,000 \times 15$ 2	$3,60,000.00$
Total cost	$38,84,992.50$		$38,16,000.00$

(Each bold 1.5 M)
This special offer at Rs. 72 per unit should be accepted as it saves Rs. $68,992.50$ as compared to original offer.

Answer:

(b) Break- even point (in units) is 50% of sales i.e. 12,000 units.

Hence, Break- even point (in sales value) is 12,000 units \times Rs. $200=$ Rs. $24,00,000$
(i) We know that Break even sales = Fixed Cost P/ V ratio
Or, Rs. $24,00,000=$ Fixed Cost 25\%
=Rs. $24,00,000 \times 25 \%$
$=$ Rs. $6,00,000 \quad\}\{2 \mathrm{M}\}$
So Fixed Cost for the year is Rs. 6,00,000
(ii) Contribution for the year $=(24,000$ units \times Rs. 200$) \times 25 \%$
$=$ Rs. 12,00,000 $\} \mathbf{1 ~ M ~}\}$
Profit for the year $=$ Contribution - Fixed Cost

$$
\begin{aligned}
& =\text { Rs. } \quad 12,00,000-\text { Rs. 6,00,000 } \\
& =\text { Rs. } 6,00,000 \quad\{1 \mathbf{~ M}\}
\end{aligned}
$$

(iii) Target net profit is Rs. 11,00,000

Hence, Target contribution = Target Profit + Fixed Cost
= Rs. 11,00,000 + Rs. 6,00,000

$$
=\text { Rs. 17,00,000 }\}\{1 \mathbf{~ M}\}
$$

Contribution per unit $=25 \%$ of Rs. $200=$ Rs. 50 per unit
No. of units $=\frac{\text { Rs. } 17,00,000}{\text { Rs. } 50 \text { per unit }}=34,000$ unit $\left.\} \mathbf{1} \mathbf{~ M}\right\}$
So, 34,000 units to be sold to earn a target net profit of Rs. 11,00,000 for a year.
(iv) Net desired total Sales (Number of unit \times Selling price) be x then desired profit is 25% on Cost or 20% on Sales i.e. 0.2 x
Desired Sales $=$ Fixed Cost + Desired Profit

> P/ V ratio
$\mathrm{x}=\frac{6,00,000+0.2 \mathrm{x}}{25 \%}$
or, $0.25 \mathrm{x}=6,00,000+0.2 \mathrm{x}$
or, $0.05 \mathrm{x}=6,00,000$
or, $x=$ Rs. $1,20,00,000$
No. of units to be sold $-\frac{R s .1,20,00,000}{R s .200}=60,000$ units $\}\{2 \mathbf{~ M}\}$
(v) If Break- even point is to be brought down by 4,000 units then Break-even point will be 12,000 units $-4,000$ units $=8,000$ units
Let Selling price be Rs. x and fixed cost and variable cost per unit remain unchanged i.e.
Rs. 6,00,000 and Rs. 150 respectively.
Break even point: Sales revenue $=$ Total cost
$8,000 \mathrm{x}=8,000 \times$ Rs. $150+$ Rs. $6,00,000$
Or, $8,000 \mathrm{x}=$ Rs. $12,00,000$ + Rs. 6,00,000
Or, $\mathrm{x}=\frac{R s .18,00,000}{8,000}=$ Rs. 225
\therefore Selling Price should be Rs. 225 \}\{2 M\}
Hence, selling price per unit shall be Rs. 225 if Break-even point is to be brought down by 4,000 units.

Answer 6:

(a)

S. No.	Cost Control	Cost Reduction
$\mathbf{1}$	Cost control aims at maintaining the costs in accordance with the established standards.	Cost reduction is concerned with reducing costs. It challenges all standards and endeavours to improvise them continuously.
$\mathbf{2}$	Cost control seeks to attain lowest possible cost under existing conditions.	Cost reduction recognises no condition as permanent, since a change will result in lower cost.
$\mathbf{3}$	In case of cost control, emphasis is on past andpresent.	In case of cost reduction, it is on presentand future.
$\mathbf{4}$	Cost control is a preventivefunction.	Cost reduction is a corrective function. It operates even when an efficient cost control system exists.
$\mathbf{5}$	Cost control ends when targetsare achieved.	Cost reduction has no visible end and is a continuous process.

(Each point 1 M)

Answer:
(b) "Like other branches of accounting, cost accounting also has certain limitations". The limitations of cost accounting are as follows: \}(1/2 M)
(i) Expensive: It is expensive because analysis, allocation and absorption of overheads requires considerable amount of additional work, and hence additional money.
(ii) Requirement of reconciliation: The results shown by cost accounts differ from those shown by financial accounts. Thus, preparation of reconciliation statements is necessary to verify their accuracy.
(iii) Duplication of work: It involves duplication of work as organization has to maintain two sets of accounts i.e. Financial Accounts and Cost Accounts.
(Each point 1.5 M)

Answer:

(c) The advantages of zero-based budgeting are as follows:

- It provides a systematic approach for the evaluation of different activities and ranks them in order of preference for the allocation of scarce resources.
- It ensures that the various functions undertaken by the organization are critical for the achievement of its objectives and are being performed in the best possible way.
- It provides an opportunity to the management to allocate resources for various activities only after having a thorough cost-benefit-analysis. The chances of arbitrary cuts and enhancement are thus avoided.
- The areas of wasteful expenditure can be easily identified and eliminated.
- Departmental budgets are closely linked with corporation objectives.
- The technique can also be used for the introduction and implementation of the system of 'management by objective.' Thus, it cannot only be used for fulfillment of the objectives of traditional budgeting but it can also be used for a variety of other purposes.
(Any five 1 M each)

Answer:

(d) This product costing system is used when an entity produces more than one variant of final product using different materials but with similar conversion activities. This means conversion activities are similar for all the product variants but materials differ significantly. Operation Costing method is also known as Hybrid product costing system as materials costs are accumulated by job order or batch wise but conversion costs i.e. labour and overheads costs are accumulated by department, and process costing methods are used to assign these costs to products. Moreover, under operation costing, conversion costs are applied to products using a predetermined application rate. This predetermined rate is based on budgeted conversion costs. The two examples of industries are Ready made garments and Jewellery making.
\qquad

