MOCK TEST PAPER-1

INTERMEDIATE: GROUP - I

PAPER - 3: COST AND MANAGEMENT ACCOUNTING

 SUGGESTED ANSWERS/HINTS1. (a) Calculation of relative costs of three proposals and their ranking

	I- Use of company's car per km. (₹)	II- Use of own car per km. (₹)	III- Use of hired car per km. (₹)
Reimbursement	--	12.00	--
Hire Charges	--	--	10.80^{*}
Fixed cost:	0.072	0.072	---
Insurance	0.048	--	0.048
Taxes	$6.24^{\#}$	--	--
Depreciation			
Running and Maintenance Cost:	7.20	--	7.20
Petrol	0.24	--	--
Repairs and Maintenance	0.144	--	0.144
Tyre	13.944	12.072	18.192
Total cost per km.	$2,78,880$	$2,41,440$	$3,63,840$
Cost for 20,000 km.	II	I	III
Ranking of proposals			

* (₹ $2,16,000 \div 20,000 \mathrm{~km}$.) $=$ ₹ 10.80
\#[(₹ 7,20,000 - ₹ 96,000$) \div 5$ years] $\div 20,000 \mathrm{~km}$. $=$ ₹ 6.24
The Second alternative i.e., use of own car by the executive and reimbursement of expenses by the company is the best alternative from company's point of view.
(b)

Statement of Distribution of Costs

Cost Elements	Basis	Total Cost		Main Product \mathbf{X} $(600$ Units)		By-Product \mathbf{Y} $(150$ Units)		By-Product Z $(200$ Units)	
			Total	Per Unit	Total	Per Unit	TotalPer Unit		
Raw Materials	$18: 3: 2$	9,200	7,200	12	1,200	8	800	4	
Labour	$36: 3: 2$	8,200	7,200	12	600	4	400	2	
Overheads	$6: 1: 1$	12,000	9,000	15	1,500	10	1,500	7.50	
Total	$\mathbf{2 9 , 4 0 0}$	$\mathbf{2 3 , 4 0 0}$	$\mathbf{3 9}$	$\mathbf{3 , 3 0 0}$	$\mathbf{2 2}$	$\mathbf{2 , 7 0 0}$	$\mathbf{1 3 . 5 0}$		

Working Notes:

1. Calculation of Units produced:

Main Product X 60\% of Raw Materials 600 Units
By-Product Y 15% of Raw Materials 150 Units
By Product Z 20\% of Raw Materials 200 Units
Wastage 5% of Raw Materials 50 Units
1000 Units
2. Cost Allocation

Raw Materials

Let Product Z requires 1 unit of raw materials then, Product Y will require 2 units of raw materials and Product X will require 3 units of raw materials.

Product	X		Y		Z
Individual Unit ratio (a)	3	$:$	2	$:$	1
Units (b)	600		150		200
Ratio for Cost Allocation (a*b)	1800	$:$	300	$:$	200
Ratio	18	$:$	3	$:$	2

Labour:
Let Product Z requires 1 hour of Labour then, Product Y will require 2 hours of Labour and Product X will require 6 hours of Labour.

Product	X		Y		Z
Individual hour ratio (a)	6	$:$	2	$:$	1
Units (b)	600		150		200
Ratio for Cost Allocation (a*b)	3600	$:$	300	$:$	200
Ratio	36	$:$	3	$:$	2

(c) Workings:
(i) Percentage of work certified:
$\frac{\text { Value of work certified }}{\text { Contract price }} \times 100=\frac{₹ 5,80,000}{₹ 14,50,000} \times 100=40 \%$
(ii) Value of material and labour used in the contract:

Particulars	Amount (₹)	Amount (₹)
Material purchased	$2,90,000$	
Less: Material on hand (30-06-2022)	$(72,500)$	$2,17,500$
Wages paid	$1,30,500$	
Add: Wages accrued (30-06-2022)	14,500	$1,45,000$
		$3,62,500$

Price of materials and wages has been increased by 25%, the value before price increase is:
$\frac{₹ 3,62,500}{125} \times 100=₹ 2,90,000$
(iii) Calculation of Value of work certified:

The value of the contract would be increased by 25% of the price increased beyond 5%.
Price increased beyond $5 \%=₹(3,62,500-2,90,000)-5 \%$ of $₹ 2,90,000$

$$
=₹ 72,500-₹ 14,500=₹ 58,000
$$

Value of contract would be increased by 25% of $₹ 58,000=₹ 14,500$
Therefore, the revised contract value $=₹ 14,50,000+₹ 14,500=₹ 14,64,500$
Calculation of the Value of work certified after taking the effect of escalation clause:
$=$ Revised contract value \times Percentage of work certified
$=₹ 14,64,500 \times 40 \%=₹ 5,85,800$
(d) (i) Monthly production of $\mathrm{AB}=50,000 \mathrm{kgs}$

Raw material required $=50,000 / 5 \times 8=80,000 \mathrm{kgs}$
Material Ae and Material Be ratio $=5: 3$
Therefore, material $\mathrm{Ae}=80,000 / 8 \times 5=50,000 \mathrm{kgs}$
$\begin{aligned} \text { Calculation of EOQ } & =\sqrt{\frac{2 \times(\text { Annual demand } \mathrm{x} \text { cost per order) }}{\text { Annual holding cost per unit }}} \\ \text { EOQ } & =\sqrt{\frac{2 \times 50,000 \mathrm{kgs} \times 12 \times 375}{12 \% \text { of } ₹ 150}}=5,000 \mathrm{kgs}\end{aligned}$
(ii) Calculation of maximum stock level of Material Ae which is perishable in nature and is required to be used within 3.5 days.
(a) Stock equals to 3.5 days consumption $=50,000 \mathrm{kgs} / 25$ days $\times 3.5$ days $=7,000 \mathrm{kgs}$
(b) Maximum stock level for Material Ae

Maximum stock $=$ Reorder quantity + reorder level - (minimum consumption x minimum lead time)

Where, reorder quantity $=7,500 \mathrm{kgs}$
Reorder level = maximum consumption* x maximum lead time
$=50,000 / 25 \times 3$ days $=6,000 \mathrm{kgs}$
Now, Maximum stock level $=7,500 \mathrm{kgs}+6,000 \mathrm{kgs}-(50,000 / 25$ days $\times 2$ days $)=9,500$ kgs
Stock required for 3.5 days consumption is lower than the maximum stock level calculated above. Therefore, maximum stock level will be $7,000 \mathrm{kgs}$.
(*since production is processed evenly throughout the month hence material consumption will also be even.)
2. (a) (i) Material Cost Variance $=$ Material Price Variance + Material Usage Variance $=₹ 8,775 \mathrm{~A}+₹ 5,625 \mathrm{~F}=₹ 3,150$ Adverse
(ii) Actual output units

Let x be the actual quantity of output
Then Standard Quantity of input for actual output ' x '
$S Q=10 x$

Material cost variance	$=(S Q \times S P)-(A Q \times A P)$
$-3,150$	$=(10 x x ₹ 22.50)-₹ 96,525$
$-3,150$	$=225 x-₹ 96,525$
$225 x$	$=₹ 96,525-3,150=₹ 93,375$
x	$=₹ 93,375 / 225=415$ Units

(iii) Actual Price of Material per unit

Material Usage variance	$=(S Q-A Q) \times S P$
5,625	$=(10 \times-A Q) \times ₹ 22.50$
5,625	$=(10 \times 415$ units $-A Q) \times ₹ 22.50$
$5,625 / 22.50$	$=4,150-A Q$
AQ	$=4,150-250=3,900$ units
Now, AQ \times AP	$=₹ 96,525$ (given)
AP	$=₹ 96,525 / A Q$
	$=₹ 96,525 / 3,900$ units $=₹ 24.75$

(iv) Actual wages rate per labour hour

Labour efficiency variance $=5,400$ Adverse (given)
Standard rate per hour (Standard time - Actual time) $=-5,400$
$₹ 120$ [(Actual output units x Number of hours per output) - Actual time] $=-5,400$
$₹ 120$ [(415 units $\times 5$ hrs) - Actual time] $=-5,400$

$\quad 2,075$ hrs - Actual time	$=-5,400 / 120$
Actual time	$=2,075+45$
	$=2,120 \mathrm{hrs}$
Now Direct wages	$=₹ 2,44,860$ (given)
Actual time x Actual rate per hour	$=₹ 2,44,860$
Actual rate per hour	$=₹ 2,44,860 / 2,120$ hrs

= ₹ 115.50
(v) Labour rate variance
$=$ Actual time (Standard Rate - Actual Rate)
$=2,120$ hrs ($₹ 120-₹ 115.50$)
$=2,120$ hrs x ₹ $4.50=9,540$ Favourable
(vi) Labour Cost variance
$=$ Labour rate variance + Labour efficiency variance
$=9,540 \mathrm{~F}+5,400 \mathrm{~A}=4,140$ Favourable
(b) Calculation of Semi Variable component

	Repairs and Maintenance (₹)	Indirect labour (₹)
At 75\% capacity	$18,00,000$	$36,00,000$
At 100\% capacity	$21,00,000$	$42,00,000$
Variable component for 25%	$3,00,000$	$6,00,000$
Hence variable cost at 75%	$3,00,000 \times 75 / 25=9,00,000$	$6,00,000 \times 75 / 25=$
		$\mathbf{1 8 , 0 0 , 0 0 0}$
Fixed cost at 75\% capacity	$18,00,000-9,00,000=9, \mathbf{0 0 , 0 0 0}$	$36,00,000-$
	$18,00,000=\mathbf{1 8 , 0 0 , 0 0 0}$	

Segregation of Fixed and Variable cost

	$\mathbf{7 5 \%}$	$\mathbf{1 0 0 \%}$	VC at $\mathbf{7 5 \%}$	FC at 75\%
Direct Material	180	240	180	
Direct Labour	120	160	120	
Power and fuel	12	16	12	
Repairs and maintenance	18	21	$\mathbf{9}$	$\mathbf{9}$
Consumables	21	28	21	
Supervision	20	20		20
Indirect labour	36	42	$\mathbf{1 8}$	$\mathbf{1 8}$
Administrative expenses	21	21		21
Selling expenses	18	18		18
Depreciation	54	54		54
Total	500	620	$\mathbf{3 6 0}$	$\mathbf{1 4 0}$

(i) Calculation of profit earned at 75\% capacity

Given PV ratio $=40 \%$, Hence variable cost would be 60%
If variable cost is ₹ 360 lakhs then sales would be $360 / 0.60=₹ 600$ lakhs
Less: Variable cost = ₹ 360 lakhs
Less: Fixed cost \quad ₹ 140 lakhs
Profit = ₹ 100 lakhs
(ii) Break-even level of activity

BEP Sales $=F C /$ P/V ratio $=140 / 0.40=₹ 350$ lakhs
3. (a) (i) Process I Statement of Equivalent Production (Under Weighted Average Method)

Particulars	Input units (in Liter)	Particulars	Output units (in Liter)	Equivalent Production			
				Material		Conversion	
				(\%)	Equivalen t units (in Liter)	(\%)	Equivalent units (in Liter)
Opening WIP	12,000	Units introduced and completed	40,000	100	40,000	100	40,000
New Material Introduced	60,000	Normal Loss (15\% of 60,000 liters)	9,000	-	-	-	-
		Closing WIP	15,000	100	15,000	80	12,000
		Abnormal Loss (Bal. fig.)	8,000	100	8,000	100	8,000
	72,000		72,000		63,000		60,000

Statement of Cost for Each Element

Elements of Costs	Material (₹)	Conversion Cost (₹)
Costs of Opening WIP	$1,75,000$	$1,40,000$
Cost of the Process (for the period)	$7,70,000$	$8,35,000$
Total Cost	$\mathbf{9 , 4 5 , 0 0 0}$	$\mathbf{9 , 7 5 , 0 0 0}$
Equivalent Units (in liter)	63,000	60,000
Cost Per equivalent Units (in liter)	$₹ 15$	$₹ 16.25$

Therefore, Cost of Medicine ' X ' is $₹ 31.25$ per liter ($₹ 15+₹ 16.25$)
(ii) Statement showing comparative data to decide whether 30,000 Liters of Medicine ' X ' should be further processed into 'XYZ'

	Alternative 1	Alternative 2
	Sell medicine 'X' after Process I (₹)	Process further into 'XYZ' (₹)
	$12,75,000$ $(30,000$ liters \mathbf{x} ₹ 42.50)	$18,75,000$ $(37,500$ liters x ₹ 50)
(30,000 liters x ₹ 31.25)	$9,37,500$	$9,37,500$
Material in Process II	-	$2,75,000$
Conversion cost in Process II	-	$2,50,000$
Total Cost	$9,37,500$	$14,62,500$
Profit	$3,37,500$	$4,12,500$

Hence, company should process further as it will increase profit further by $₹ 75,000$ (₹ $4,12,500$ - ₹ $3,37,500$)
(b) Cost Sheet of A Limited for the year ended 31st March 2022

Particulars	Amount (₹)	Amount (₹)
Opening Stock of Raw materials	$5,00,000$	
Add: Purchases (balancing figure)	$\mathbf{2 0 , 5 0 , 0 0 0}$	
Less: Closing stock of raw materials	$6,30,000$	
Direct material consumed (balancing figure)		$19,20,000$
Direct labour		$10,50,000$
Prime Cost		$29,70,000$
Add: Factory Overheads (10,50,000 / 175\%)		$6,00,000$
Add: Opening Stock of Work in Progress		$6,00,000$
		$41,70,000$
Less: Closing Stock of Work in Progress		$8,00,000$
Works Cost		$3,70,000$
Add: Administrative Overheads (relating to production activity)		$1,50,000$
COST OF PRODUCTION		$35,20,000$
Add: Opening stock of finished goods		$45,00,000$
Cost of Goods available for sale		$10,50,000$
Less: Closing Stock of finished goods		$34,50,000$
COST OF GOODS SOLD		$2,50,000$
(Working Note: (iv))		$37,00,000$
Add: Selling and Distribution Overhead		$13,00,000$
COST OF SALES		$50,00,000$
Add: Profit (Balancing figure) [Sales - Cost of Sales]		
SALES		

Profit as a \% of sales $=\frac{13 \text { Lakhs }}{50 \text { Lakhs }} \times 100=26 \%$

Working Notes:

(i) The cost sheet is completed by Reverse Working. Purchases amount is the balancing figure.
(ii) Direct labour $=175 \%$ of factory overhead (given). Hence, if direct labour $=10,50,000$, then Factory Overhead $=10,50,000 / 175 \%=₹ 6,00,000$
(iii) Selling Overhead ₹ $2,50,000$ (total), selling per unit ₹ 500 .

Number of units sold $=₹ 2,50,000$ ₹ $₹ 500=500$ units
(iv) Cost of goods sold = 500 units $x ₹ 6,900=₹ 34,50,000$
4. (a) (i) Calculation of net wages receivable by each employee from the employer (October 2022):

	Ram (₹)	Shyam (₹)	Mohan (₹)	Kundan (₹)	Total (₹)
Wages for October 2022	$\begin{gathered} 3,000 \\ \text { (₹ } 100 \mathrm{x} \\ 30 \text { days) } \end{gathered}$	$\begin{gathered} 3,600 \\ \text { (₹ } 120 \mathrm{x} \\ 30 \text { days) } \end{gathered}$	$\begin{gathered} 3,900 \\ \text { (₹ } 130 \mathrm{x} \\ 30 \text { days) } \end{gathered}$	2,500	13,000

Less: Employee Contribution to PF @ 8\%	240	288	312	200	1,040
Less: Employee Contribution to ESI @ 4\%	120	144	156	100	520
Net Wages Receivable	$\mathbf{2 , 6 4 0}$	$\mathbf{3 , 1 6 8}$	$\mathbf{3 , 4 3 2}$	$\mathbf{2 , 2 0 0}$	$\mathbf{1 1 , 4 4 0}$

(ii) Calculation of total amount of Provident Fund required to be deposited by employer (October 2022):

	$\mathbf{(₹)}$
Total Wages for the month	13,000
Employer's Contribution to Provident Fund @8\% of ₹ 13,000	1,040
Add: Employee's Contribution to Provident Fund @8\% of ₹ 13,000	1,040
Total amount of Provident Fund required to be deposited by employer	$\mathbf{2 , 0 8 0}$

(iii) Calculation of total amount of ESI required to be deposited by employer (October 2022):

	$\mathbf{(₹)}$
Total Wages for the month	13,000
Employer's Contribution to ESI @5\% of ₹ 13,000	650
Add: Employee's Contribution to ESI @4\% of ₹ 13,000	520
Total amount of ESI required to be deposited by employer	$\mathbf{1 , 1 7 0}$

(iv) Total labour cost to employer (October 2022):

	$\mathbf{(₹)}$
Total Wages for the month	13,000
Add: Employer's Contribution to Provident Fund @8\% of ₹ 13,000	1,040
Add: Employer's Contribution to ESI @5\% of ₹ 13,000	650
Total labour cost to employer	$\mathbf{1 4 , 6 9 0}$

(v) Calculation of Total Cost for October 2022

	(₹)
Total Material Cost	20,000
Total Labour Cost	14,690
Total Overheads (Equal to Labour Cost)	14,690
Total Cost	$\mathbf{4 9 , 3 8 0}$

(b) Workings -

1. Fixed Production overheads (given) $=₹ \mathbf{2 5}$ per unit

So, at 1,00,000 units capacity, it will be ₹ $25,00,000$ (1,00,000 units x ₹ 25)
2. Selling and distribution overheads:

Given (1,00,000 units x ₹ 25) = ₹ $25,00,000$
So, Fixed component
$=₹ 25,00,000 \times 20 \%=₹ 5,00,000$
Hence, variable component
$=₹ 25,00,000-₹ 5,00,000=₹ 20,00,000$
Variable per unit
= ₹ $20,00,000 / 1,00,000$ units
= ₹ 20 per unit

Flexible Budget

Particulars	Per unit $(₹)$	Output Level	
		$\mathbf{6 0 , 0 0 0}$ units $(₹)$	$\mathbf{7 5 , 0 0 0}$ units $(₹)$
Sales (A)	1,750	$10,50,00,000$	$13,12,50,000$
Variable costs:			
Direct Material	650	$3,90,00,000$	$\mathbf{4 , 8 7 , 5 0 , 0 0 0}$
Direct Wages	125	$\mathbf{1 , 9 5 , 0 0 , 0 0 0}$	$\mathbf{2 , 4 3 , 7 5 , 0 0 0}$
Direct expenses	50	$30,00,000$	$93,75,000$
Variable overheads	20	$12,00,000$	$15,50,000$
Selling and distribution overheads	1,170	$7,02,00,000$	$8,77,50,000$
Total Variable cost (B)		$3,48,00,000$	$\mathbf{4 , 3 5 , 0 0 , 0 0 0}$
Contribution (C = A - B)			
Fixed costs:		$25,00,000$	$25,00,000$
Production overheads		$60,00,000$	$60,00,000$
Administrative overheads		$\mathbf{5 , 0 0 , 0 0 0}$	$\mathbf{5 , 0 0 , 0 0 0}$
Selling and distribution overheads		$90,00,000$	$90,00,000$
Total Fixed cost (D)		$\mathbf{2 , 5 8 , 0 0 , 0 0 0}$	$\mathbf{3 , 4 5 , 0 0 , 0 0 0}$
Profit (C-D)			

P/V Ratio $=(₹ 3,48,00,000 / ₹ 10,50,00,000) \times 100=33.143 \%$
OR
P/V Ratio $=(₹ 4,35,00,000 / ₹ 13,12,50,000) \times 100=33.143 \%$
5. (a) Workings:

Particulars	$\left.\begin{array}{l}\text { Six } \begin{array}{c}\text { months } \\ \text { operators (Hours) }\end{array} \\ \hline \text { Normal available hours half yearly (1,248 } \times 6 \text { operators) } \\ \text { Less: Absenteeism hours }(18 \times 6 \text { operators) } \\ \text { Paid hours (A) } \\ \text { Less: Leave hours }(20 \times 6 \text { operators) } \\ \text { Less: Normal idle time }(10 \times 6 \text { operators) } \\ \text { Effective working hours }\end{array} 108\right)$

Computation of Comprehensive Machine Hour Rate

Particulars	Amount for six months (₹)
Operators' wages (7,380/8 x200)	$1,84,500$
Production bonus (10\% on wages)	18,450
Power consumed	80,500
Supervision and indirect labour	33,000
Lighting and Electricity	12,000

Repair and maintenance $\{(5 \% \times ₹ 64,00,000) / 2\}$	$1,60,000$
Insurance $(₹ 7,20,000 / 2)$	$3,60,000$
Depreciation $\{(₹ 64,00,000 \times 10 \%) / 2\}$	$3,20,000$
Sundry Work expenses $(₹ 1,00,000 / 2)$	50,000
Management expenses $(₹ 10,00,000 / 2)$	$5,00,000$
Total Overheads for 6 months	$\mathbf{1 7 , 1 8 , 4 5 0}$
Comprehensive Machine Hour Rate = ₹ $\mathbf{1 7 , 1 8 , 4 5 0 / 7 , 2 0 0}$ hours	$₹ \mathbf{2 3 8 . 6 7}$

(b) (i) Cost per unit - Conventional Costing: Absorption rate method

Particulars	A (₹)	B (₹)	C (₹)	D (₹)
Material	140	90	180	150
Labour @ ₹ 60 per labour hour	60	180	120	90
Overheads @ ₹ 280 per machine hour	840	560	1680	1120
Cost per unit (in ₹)	1,040	830	$\mathbf{1 , 9 8 0}$	$\mathbf{1 , 3 6 0}$
No of units	1,500	2,500	10,000	6,000
Total cost (₹)	$\mathbf{1 5 , 6 0 , 0 0 0}$	$\mathbf{2 0 , 7 5 , 0 0 0}$	$\mathbf{1 , 9 8 , 0 0 , 0 0 0}$	$\mathbf{8 1 , 6 0 , 0 0 0}$

(ii) Statement of apportionment of overheads:

Amount (₹)

Type of Cost	Cost Driver	A	B	C	D
Setups	No Setups	$\begin{gathered} 7,48,000 \\ (100 \times 7,480) \\ \hline \end{gathered}$	$\begin{gathered} 9,35,000 \\ (125 \times 7,480) \end{gathered}$	$\begin{gathered} \hline 44,88,000 \\ (600 \times 7,480) \end{gathered}$	$\begin{gathered} \hline 29,92,000 \\ (400 \mathrm{x} 7,480) \\ \hline \end{gathered}$
Machinery	Machine hours	$\begin{gathered} 2,52,000 \\ (4,500 \times 56) \end{gathered}$	$\begin{gathered} 2,80,000 \\ (5,000 \times 56) \end{gathered}$	$\begin{gathered} 33,60,000 \\ (60,000 \times 56) \end{gathered}$	$\begin{gathered} 13,44,000 \\ (24,000 \times 56) \end{gathered}$
Material Handling	No. of Movements of material	$\begin{gathered} 1,78,500 \\ (15 \times 11,900) \end{gathered}$	$\begin{gathered} 2,38,000 \\ (20 \times 11,900) \end{gathered}$	$\begin{gathered} 11,90,000 \\ (100 \times 11,900) \end{gathered}$	$\begin{gathered} 10,11,500 \\ (85 \times 11,900) \end{gathered}$
Inspection	No. of Inspections	$\begin{gathered} 9,16,300 \\ (200 \times 4,581.50) \\ \hline \end{gathered}$	$\begin{gathered} 11,45,375 \\ (250 \times 4,581.50) \\ \hline \end{gathered}$	$\begin{gathered} 41,23,350 \\ (900 \times 4,581.50) \end{gathered}$	$\begin{gathered} 29,77,975 \\ (650 \times 4,581.50) \end{gathered}$
Total		20,94,800	25,98,375	1,31,61,350	83,25,475
Output Units		1,500	2,500	10,000	6,000
Overhead/ unit		1,396.53	1,039.35	1,316.14	1,387.58

Statement showing Cost per unit and Total cost using Activity Based Costing

Particulars	$\mathbf{A}(\boldsymbol{₹})$	$\mathbf{B}(₹)$	$\mathbf{C}(₹)$	$\mathbf{D}(₹)$
Material	140.00	90.00	180.00	150.00
Labour	60.00	180.00	120.00	90.00
Total	$\mathbf{2 0 0 . 0 0}$	$\mathbf{2 7 0 . 0 0}$	300.00	$\mathbf{2 4 0 . 0 0}$
No. of units	1,500	2,500	10,000	6,000
Total cost (excluding overheads)	$3,00,000$	$6,75,000$	$30,00,000$	$14,40,000$
Add: Overheads (as calculated)	$20,94,800$	$25,98,375$	$1,31,61,350$	$83,25,475$
Total cost	$\mathbf{2 3 , 9 4 , 8 0 0}$	$\mathbf{3 2 , 7 3 , 3 7 5}$	$\mathbf{1 , 6 1 , 6 1 , 3 5 0}$	$\mathbf{9 7 , 6 5 , 4 7 5}$
Cost per unit	$\mathbf{1 , 5 9 6 . 5 3}$	$\mathbf{1 , 3 0 9 . 3 5}$	$\mathbf{1 , 6 1 6 . 1 4}$	$\mathbf{1 , 6 2 7 . 5 8}$

Working Notes:

1. Calculation of Total machine hours

Particulars	A	B	C	D	
(a)	Machine hours per unit	3	2	6	4
(b)	Production(units)	1,500	2,500	10,000	6,000
(c)	Total machine hours (a) \times (b)	4,500	5,000	60,000	24,000

Total Machine hours $=93,500$
Total production overheads $=93,500 \times 280=₹ 2,61,80,000$
2. Calculation of cost driver rate

Cost pool	Amount of cost (₹)	Cost Driver (basis)	Cost Driver (units)	Cost Driver Rate (₹)
Setups	$91,63,000$	No. of Setups	1,225	7,480 per set up
Machinery	$52,36,000$	Machine Hrs.	93,500	56 per machine hour
Material Handlings	$26,18,000$	No. of Material Movements	220	11,900 per material movement
Inspection	$91,63,000$	No. of Inspections	2,000	$4,581.50 \quad$ per inspection
	$\mathbf{2 , 6 1 , 8 0 , 0 0 0}$			

6. (a)

Service industry	Unit of cost (examples)
Hospital	Patient per day, room per day or per bed, per operation etc.
Electricity Supply service	Kilowatt- hour (kWh)
Cinema	Per ticket
Canteen	Per item, per meal etc.
Hotels	Guest Days or Room Days

(b) Purely Financial Expenses included in Financial Accounts only:
(i) Interest on loans or bank mortgages.
(ii) Expenses and discounts on issue of shares, debentures etc.
(iii) Other capital losses i.e., loss by fire not covered by insurance etc.
(iv) Losses on the sales of fixed assets and investments
(v) Income tax, donations, subscriptions
(vi) Expenses of the company's share transfer office, if any.
(c) Unit costing: It is that method of costing where the output produced is identical and each unit of output requires identical cost. Unit costing is synonymously known as single or output costing, but these are sub-division of unit costing method.

This method of costing is followed by industries which produce single output or few variants of a single output, therefore, this method of costing, finds its application in industries like paper, cement, steel works, mining, breweries etc. These types of industries produce identical products and therefore have identical costs.
(d)

Activity Cost Pools	Related Cost Drivers
Inspecting and testing costs	Number of tests
Setting up machines cost	Number of set-ups
Machining costs	Machine hours
Supervising Costs	Direct labour hours
Ordering and Receiving Materials cost	Number of purchase orders

(e)

Trade Discount	Trade discount is deducted from the purchase price if it is not shown as deduction in the invoice.
Cash Discount	Cash discount is not deducted from the purchase price. It is treated as interest and finance charges. It is ignored.
Penalty	Penalty of any type is not included with the cost of purchase
Insurance charges	Insurance charges are paid for protecting goods during transit. It is added with the cost of purchase.
Commission paid	Commission or brokerage paid is added with the cost of purchase.

