PAPER : COSTING
Answer to questions are to be given only in English except in the case of candidates who have opted for Hindi Medium. If a candidate who has not opted for Hindi Medium. His/her answer in Hindi will not be valued.

Question No. 1 is compulsory.
Candidates are also required to answer any Four questions from the remaining Five Questions.
In case, any candidate answers extra question(s)/sub-question(s) over and
above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.
Wherever necessary, suitable assumptions may be made and disclosed by way of note.

Answer 1:

(a) (i) Calculation of Inventory Turnover ratios and number of days:

	Material A (Rs.)	Material B (Rs.)
Opening stock	30,000	32,000
Add: Purchases	90,000	51,000
	$1,20,000$	83,000
Less: Closing stock	$1,00,000$	14,000
Materials consumed	25,000	69,000
Average inventory: (Opening Stock + Closing Stock) $\div 2$	$\mathbf{2 3 , 0 0 0}$	
(a) Inventory Turnover ratio: (Consumption \div Average inventory)	$\mathbf{4}$ times	$\mathbf{3}$ times
(b) Number of days for which the average inventory held (Number of Days in a year/IT ratio)	$\mathbf{1 2 0}$ days	$\left.\begin{array}{c}\text { \{1 M } \\ \text { Each } \mathbf{~ 4} \\ =\mathbf{4} \mathbf{~ M}\}\end{array}\right\}$

(ii) Comments: Material A is moving faster than Material B. Or Material A has $\}\{\mathbf{1} \mathbf{~ M}\}$
a less holding period.

Answer:

(b) (i)

Flexible Budget (before promotion)

	Particulars	Product 'AYE'	Product 'ZYE'	Total
	Production \& Sales (units)	4,000	3,000	
		Amount (Rs.)	Amount (Rs.)	Amount (Rs.)
A.	Sales Value	$8,00,000$ (Rs. $200 \times 4,000$)	$5,40,000$ (Rs. $180 \times 3,000$)	13,40,000
B.	Direct Materials	$\begin{array}{r} 3,20,000 \\ \text { (Rs. } 80 \times 4,000 \text {) } \\ \hline \end{array}$	$\begin{array}{r} 2,10,000 \\ \text { (Rs. } 70 \times 3,000 \text {) } \\ \hline \end{array}$	5,30,000
C.	Direct labour	$\begin{array}{r} 1,60,000 \\ \text { (Rs. } 40 \times 4,000 \text {) } \\ \hline \end{array}$	$\begin{array}{r} 1,05,000 \\ \text { (Rs. } 35 \times 3,000 \text {) } \\ \hline \end{array}$	2,65,000
D.	Variable Overheads	$\begin{array}{r} 80,000 \\ \text { (Rs. } 20 \times 4,000 \text {) } \end{array}$	$\begin{array}{r} 75,000 \\ \text { (Rs. } 25 \times 3,000 \text {) } \end{array}$	1,55,000
E.	Total Variable Cost $(B+C+D)$	5,60,000	3,90,000	9,50,000
F.	Contribution (A-E)	2,40,000	1,50,000	3,90,000
G.	Fixed Overhead	$\begin{array}{r} 40,000 \\ (\text { Rs. } 10 \times 4,000) \\ \hline \end{array}$	$\begin{array}{r} 30,000 \\ \text { (Rs. } 10 \times 3,000 \text {) } \\ \hline \end{array}$	70,000
H.	Profit (F-G)	2,00,000	1,20,000	3,20,000
	Profit per unit	50	40	

(ii) Flexible Budget (after promotion)

	Particulars	Product 'AYE'	Product 'ZYE'	Total	
	Production \& Sales (units)	$\begin{array}{r} 4,200 \\ (4,000 \times 105 \%) \end{array}$	$\begin{array}{r} 3,150 \\ (3,000 \times 105 \%) \\ \hline \end{array}$		
		Amount (Rs.)	Amount (Rs.)	$\begin{gathered} \text { Amount } \\ \text { (Rs.) } \\ \hline \end{gathered}$	
A.	Sales Value	$\begin{array}{r} 9,24,000 \\ \text { (Rs. } 220 \times 4,200 \text {) } \end{array}$	$\begin{array}{r} 6,23,700 \\ \text { (Rs. } 198 \times 3,150 \text {) } \end{array}$	15,47,700	
B.	Direct Materials	$\begin{array}{r} 3,36,000 \\ \text { (Rs. } 80 \times 4,200 \text {) } \\ \hline \end{array}$	$\begin{array}{r} 2,20,500 \\ \text { (Rs. } 70 \times 3,150 \text {) } \\ \hline \end{array}$	5,56,500	
C.	Direct labour	$\begin{array}{r} 1,68,000 \\ \text { (Rs. } 40 \times 4,200 \text {) } \\ \hline \end{array}$	$\begin{array}{r} 1,10,250 \\ \text { (Rs. } 35 \times 3,150 \text {) } \\ \hline \end{array}$	2,78,250	
D.	Variable Overheads	$\begin{array}{r} 1,00,800 \\ \text { (Rs. } 24 \times 4,200 \text {) } \\ \hline \end{array}$	$\begin{array}{r} 94,500 \\ (\text { Rs. } 30 \times 3,150) \\ \hline \end{array}$	1,95,300	
E.	Total Variable Cost $(B+C+D)$	6,04,800	4,25,250	10,30,050	
F.	Contribution (A-E)	3,19,200	1,98,450	5,17,650	
G.	Fixed Overhead	$\begin{array}{r} 42,000 \\ (\text { Rs. } 40,000 \times 105 \%) \\ \hline \end{array}$	$\begin{array}{r} 31,500 \\ (\text { Rs. } 30,000 \times 105 \%) \end{array}$	73,500	Each x 5
H.	Profit (F-G)	2,77,200	1,66,950	4,44,150	$\left.=2^{1 / 2} \mathrm{M}\right\}$
	Profit per unit	66	53		

Answer:

(c) (i) Calculation of Effective hourly rate of earnings under Rowan Incentive Plan:
Standard time allowed $=10$ hours
Time taken $=8$ hours; Time saved $=2$ hours

	Particulars	Amount (Rs.)
A	Basic guaranteed wages (Rs. 150×8 hours)	1,200
B	Add: Bonus for time saved $\left(\frac{2}{2} \times 8 \times\right.$ Rs. 150)	240
C	Total earnings (A + B)	1,440
D	Hours worked	8 hours
E	Effective hourly rate (C \div D)	$\mathbf{1 8 0}$

(ii) Let the time taken to complete the job is "T" and the time saved is $10-\mathrm{T}$ Effective hourly rate under the Halsey Incentive scheme

$$
=\frac{(\text { Rate } \times \text { Hours Worked })+(\text { Rate } \times 50 \% \text { of Time Saved })}{\text { Hours Worked }}=\text { Rs. } 180
$$

$$
\frac{(R s .150 \times T)+R s .150 \times 50 \%(10-T)}{T}=R s .180
$$

$$
150 \mathrm{~T}+750-75 \mathrm{~T}=180 \mathrm{~T}
$$

$$
180 \mathrm{~T}-75 \mathrm{~T}=750
$$

$$
T=\frac{750}{105}=\mathbf{7 . 1 4} \text { hours }\left\{\mathbf{2}^{1 / 2} \mathbf{M}\right\}
$$

Answer:

(d) (i)

Process - I Account

Particulars	Units	(Rs.)	Particulars	Units	(Rs.)
To Materials	10,000	80,000	By Normal loss (5\% of 10,000)	500	2,500
To Wages	-	60,000	By Process-II A/c (Rs. $20^{*} \times 9,650$ units)	9,650	$\mathbf{1 , 9 3 , 0 0 0}\}\{\mathbf{1 ~ M \}}$
To Manufacturing OH	150	$\mathbf{5 2 , 5 0 0}$			
To Abnormal Gain A/c (Rs. $20^{*} \times 150$ units $)$	10,150	$1,95,500$		10,150	$1,95,500$

$$
\left.\left.* \frac{(80,000+60,000+52,500)-2,500}{10500-500}=\text { Rs. } \mathbf{2 0}\right\} \mathbf{1} \mathbf{~ M}\right\}
$$

(ii) Abnormal Gain - Account

Particulars	Units	(Rs.)	Particulars	Units	(Rs.)
To Normal loss A/c	150	750	By Process-I A/c	150	3,000
To Costing P\&L A/c	-	2,250			
	150	3,000		150	3,000

Answer 2:
(a) No. of bags manufactured $=1,000$ units

	Particulars	Total Cost (Rs.)	Cost per unit (Rs.)	
1.	Direct materials consumed:			
	Leather sheets	3,20,000	320.00	
	- Cotton cloths	15,000	15.00	
	Add: Freight paid on purchase	8,500	8.50	
	(i) Cost of material consumed $\quad\{\mathbf{1 / 2 ~ M}\}$	3,43,500	343.50	\{1/2 M
2.	Direct wages (Rs. $80 \times 2,000$ hours)	1,60,000	160.00	
3.	Direct expenses (Rs. $10 \times 2,000$ hours)	20,000	20.00	
4.	(ii) Prime Cost $\{1 / 2 \mathrm{M}\}$	5,23,500	523.50	\{1/2M\}
5.	Factory Overheads: Depreciation on machines \{1 \{(Rs. $22,00,000 \times 90 \%) \div 120$ months $\}$	M\} 16,500	16.50	
	Apportioned cost of factory rent	98,000	98.00	
6.	(iii) Works/ Factory Cost $\quad\{1 / 2 \mathrm{M}\}$	6,38,000	638.00	\{1/2 M
7.	Less: Realisable value of cuttings (Rs. $150 \times 35 \mathrm{~kg}$.)	$(5,250)$	(5.25)	
8.	(iv) Cost of Production \{1/2 M\}	6,32,750	632.75	1/2 M
9.	Add: Opening stock of bags	0		
10.	Less: Closing stock of bags (100 bags \times Rs. 632.75) $\quad\{\mathbf{1 ~ M \}}$	$(63,275)$		
11.	(v) Cost of Goods Sold $\{1 / 2 \mathrm{M}\}$	5,69,475	632.75	\{1/2 M
12.	Add: Administrative Overheads:			
	- Staff salary	45,000	50.00	
	- Apportioned rent for administrative office	12,000	13.33	
13.	Add: Selling and Distribution Overheads			
	- Staff salary	72,000	80.00	
	- Apportioned rent for sales office	10,000	11.11	
	- Freight paid on delivery of bags	18,000	20.00	
14.	(vi) Cost of Sales \{1/2 M\}	7,26,475	807.19	K1/2 M

Apportionment of Factory rent:

To factory building $\{($ Rs. $1,20,000 \div 2400$ sq. feet $) \times 1,960$ sq. feet $\}=$ Rs. 98,000 To administrative office $\{($ Rs. $1,20,000 \div 2400$ sq. feet $) \times 240$ sq. feet $\}=$ Rs. 12,000$\}\{2 \mathrm{M}\}$
To sale office $\{($ Rs. $1,20,000 \div 2400 \mathrm{sq}$. feet $) \times 200 \mathrm{sq}$. feet $\}=$ Rs. 10,000

Answer:

(b) Variable Cost per Unit = Rs. 16

Fixed Cost per Unit = Rs. 4, Total Fixed Cost=2,00,000 units \times Rs. $4=$ Rs. 8,00,000 $\} \mathbf{1} \mathbf{~ M}\}$
Total Cost per Unit = Rs. 20
Selling Price per Unit = Total Cost+ Profit =Rs. 20 + Rs. 4 = Rs. 24
Contribution per Unit = Rs. 24 - Rs. $16=$ Rs. 8 \} $\{1 \mathrm{M}\}$
(i) Present Break-even Sales (Quantity) $=\frac{\text { Fixed Cost }}{\text { Contribution } m \text { arg in per unit }}=\frac{R s .8,00,000}{R s .8}$
$=1,00,000$ units $\}\{1 \mathrm{M}\}$
Present Break-even Sales (Rs.) = 1,00,000 units x Rs. $24=$ Rs. 24,00,000 $\}\{\mathbf{1} \mathbf{M}\}$
(ii) Present P/V Ratio $\left.=\frac{8}{24} \times 100=\mathbf{3 3 . 3 3 \%}\right\}\{\mathbf{1} \mathbf{~ M}\}$
(iii) Revised Selling Price per Unit = Rs. 24 - 10% of Rs. $24=$ Rs. 21.60

Revised Contribution per Unit=Rs. 21.60-Rs. $16=$ Rs. 5.60$\}\{1 \mathrm{M}\}$
Revised P/V Ratio $=\frac{5.60}{21.60} \times 100=25.926 \%$
Revised Break-even point (Rs.) $=\frac{\text { Fixed } \cos t}{P / V \text { ratio }}=\frac{8,00,000}{25.926 \%}=$ Rs. 30,85,705 $\}\{\mathbf{1} \mathbf{~ M}\}$
Or
Revised Break-even point (units) $=\frac{\text { Fixed } \cos t}{\text { Contribution } m \text { arg in per unit }}=\frac{8,00,000}{5.60}=\mathbf{1 , 4 2 , 8 5 7}$ units $\}\{\mathbf{1} \mathbf{M}\}$

Revised Break-even point (Rs.) = 1,42,857 units x Rs. $21.60=$ Rs. 30,85,711
(iv) Present profit $=$ Rs. 8,00,000

Desired Profit $=120 \%$ of Rs. $8,00,000=$ Rs. 9,60,000
Sales to earn a profit of Rs. 9,60,000
Total contribution required $=8.00 .000+9,60,000=$ Rs. $17,60,000$
$\frac{\text { Fixed } \cos t+\text { Desired profit }}{\text { Contributón per unit }}=\frac{8,00,000+9,60,000}{5.60}=\mathbf{3 , 1 4 , 2 8 6}$ units $\}\{\mathbf{1} \mathbf{M}\}$
Revised sales (in Rs.) $=3,14,286$ units \times Rs. $21.60=$ Rs. 67,88,578 $\}\{\mathbf{1 M}\}$

Answer 3:

(a) (1) Fixed Overhead Expenditure Variance

$=$ Budgeted Fixed Overheads - Actual Fixed Overheads
$=$ Rs. 12,000 - Rs. 12,800 (as calculated below) $=$ Rs. $\mathbf{8 0 0}$ (A) $\}\{\mathbf{1} \mathbf{~ M}\}$
(2) Fixed Overhead Cost Variance= Absorbed Fixed Overheads - Actual Fixed Overheads

$$
\begin{aligned}
\mathbf{2 , 8 0 0}(A) & =\text { Rs. 10,000 - Actual Overheads Actual } \\
\text { Overheads } & =\text { Rs. } \mathbf{1 2 , 8 0 0}\}\{\mathbf{2} \mathbf{~ M}\}
\end{aligned}
$$

(3) Actual Hours for Actual Production = Rs. 12,800/ Rs. $8=\mathbf{1 , 6 0 0} \mathbf{h r s}\}.\{\mathbf{1} \mathbf{M}\}$
(4) Fixed Overhead capacity Variance
= Budgeted Fixed Overheads for Actual Hours- Budgeted Fixed Overheads
$=$ Rs. 5×1600 hrs. - Rs. 12,000 = Rs. 4,000 (A) \}\{1 M\}
(5) Standard Hours for Actual Production
= Absorbed Overheads/ Std. Rate
$=$ Rs. $10,000 /$ Rs. $5=\mathbf{2 , 0 0 0}$ hrs. $\}\{1 \mathbf{M}\}$
(6) Fixed Overhead Efficiency Variance
= Absorbed Fixed Overheads - Budgeted Fixed Overheads for Actual Hours
$=$ Rs. 10,000 - Rs. $5 \times 1,600$ hrs. = Rs. 2,000 (F) \}\{1 M\}

Working Note:

(i) Fixed Overhead Volume Variance $=$ Absorbed Fixed Overheads - Budgeted Fixed Overheads

2,000 (A) = Absorbed Fixed Overheads - Rs. 12,000
Absorbed Fixed Overheads = Rs. 10,000 $\}\{2 \mathrm{M}\}$
(ii) Standard Rate/ Hour = Rs. 5 (Rs. 12,000/2,400 hrs.) \}\{1 M\}

Answer:

(b) Working Notes:

Annual requirement $(A) \quad=27,000$ units
Cost per order (O) = Rs. 240
Inventory carrying cost (i) = 12.5\%
Cost per unit of spare (c)
= Rs. 50
Carrying cost per unit (i $\times \mathrm{c}$)
$=$ Rs. $50 \times 12.5 \%=$ Rs. $\mathbf{6 . 2 5}\} \mathbf{1} \mathbf{~ M}\}$
Economic Order Quantity (EOQ) $=\sqrt{\frac{2 \times A \times O}{i \times c}}$

$$
\left.=\sqrt{\frac{2 \times 27,000 \times 240}{6.25}}=\mathbf{1 4 4 0} \text { units }\right\}\{\mathbf{1} \mathbf{~}\}
$$

(i) Calculation of saving by opting EOQ:

	Existing Order policy	EOQ Model
No. of orders	9 $\left(\frac{27,000}{3,000}\right)$	$\mathbf{1 8 . 7 5}$ or $\mathbf{1 9}$ $\left(\frac{27,000}{1,440}\right)$
A. Ordering Cost (Rs.)	$\mathbf{2 , 1 6 0}$ $(R s .240 \times 9)$	$\left\{\begin{array}{c}\mathbf{4 , 5 0 0} \\ R s .240 \times\left(\frac{27,000}{1,440}\right)\end{array}\right\}$
B. Carrying cost (Rs.)	$\mathbf{9 , 3 7 5}$ $\left(\frac{3,000 \times R s .6 .25}{2}\right)$	$\left(\frac{1,440 \times R s .6 .25}{2}\right)$
Total cost (A+B) (Rs.)	$\mathbf{1 1 , 5 3 5}\} \mathbf{1 1 \mathbf { M } \}}$	$\mathbf{9 , 0 0 0}\} \mathbf{1 1 \mathbf { M } \}}$

Savings of Cost by opting EOQ Model = Rs. 11,535-Rs. 9,000 = Rs. 2,535 \}\{1 M\}
(ii) Re-order point under EOQ:

Re-order point / Re-order level = Maximum consumption \times Maximum lead $\} \mathbf{1} \mathbf{~ M}\}$ time
Consumption per day $=\frac{27,000 \text { units }}{360 \text { days }}=\mathbf{7 5}$ units
Re-order point/Re-order level $=75$ units $\times 12$ days $=\mathbf{9 0 0}$ units $\}\{\mathbf{2} \mathbf{~}\}$
(iii) Frequency of Orders (in days):
$\frac{360 \text { days }}{\text { No. of orders a year }}=\frac{360 \text { days }}{19}=18.95$ days or 19 days $\left.\} \mathbf{2} \mathbf{~ M}\right\}$

Answer 4:

(a) (i) Statement of Equivalent Production (Weighted Average method)

Particulars	Input Units	Particulars	Output Units	Equivalent Production			
				Material		Labour \& O.H.	
				\%	Units	\%	Units
Opening WIP	3,000	Completed and transferred to Process-II	36,000	100	36,000	100	36,000
Units introduced	42,000	Normal Loss (4\% of 45,000 units)	1,800	--	--	--	--
		Abnormal loss (Balancing figure)	3,000	100	3,000	70	2,100
		Closing WIP	4,200	100	4,200	50	2,100
	45,000		45,000		43,200	\} 1 M$\}$	40,200

(ii) Statement showing cost for each element				
Particulars	Materials (Rs.)	Labour (Rs.)	Overhead (Rs.)	Total (Rs.)
Cost of opening work- inprocess	1,80,500	32,400	90,000	3,02,900
Cost incurred during the month	36,04,000	4,50,000	15,18,000	55,72,000
Less: Realisable Value of normal scrap (Rs. $62.50 \times 1,800$ units)	$(1,12,500)$	--	--	$(1,12,500)$
Total cost: (A)	36,72,000	4,82,400	16,08,000	57,62,400
Equivalent units: (B)	43,200	40,200	40,200	
Cost per equivalent unit: $(C)=(A \div B)$	\{1/2 M\}\{ 85.00	\{1/2 M\}\{ 12.00	\{1/2 M\}\{ 40.00	137.00

Statement of Distribution of cost			\}1 M \}
Particulars	Amount (Rs.)	Amount (Rs.)	
1. Value of units completed and transferred: (36,000 units \times Rs. 137)		49,32,000	
2. Value of Abnormal Loss:			
- \quad Materials (3,000 units \times Rs. 85)	2,55,000		
Labour (2,100 units \times Rs. 12)	25,200		
- Overheads (2,100 units \times Rs. 40)	84,000	3,64,200	\}1/2 M
3. Value of Closing W-I-P:			
- Materials (4,200 units \times Rs. 85)	3,57,000		
- \quad Labour (2,100 units \times Rs. 12)	25,200		
- Overheads (2,100 units \times Rs. 40)	84,000	4,66,200	\} $1 / 2 \mathrm{M}\}$

(iii) Process-I A/c

Particulars	Units	(Rs.)	Particulars	Units	(Rs.)
To Opening W.I.P:					
$-\quad$ Materials	3,000	$1,80,500$	By Normal Loss	1,800	$1,12,500$
- Labour	--	32,400	(Rs. $62.5 \times 1,800$ units)		
$-\quad$ Overheads	--	90,000			
To Materials introduced	42,000	$36,04,000$	By Abnormal loss	3,000	$\mathbf{3 , 6 4 , 2 0 0}$
To Labour		$4,50,000$	By Process-I A/c	36,000	$49,32,000$
To Overheads		$15,18,000$	By Closing WIP	4,200	$\mathbf{4 , 6 6 , 2 0 0}$
	45,000	$\mathbf{5 8 , 7 4 , 9 0 0}$		45,000	$\mathbf{5 8 , 7 4 , 9 0 0}$

(iv)

Particulars	Units	(Rs.)	Particulars	Units	(Rs.)
To Process-I A/c	1,800	$1,12,500$	By Cost Ledger Control A/c	1,800	$1,12,500$
	1,800	$\mathbf{1 , 1 2 , 5 0 0}$		1,800	$\mathbf{1 , 1 2 , 5 0 0}$

(v)

Particulars	Units	(Rs.)	Particulars	Units	(Rs.)
To Process-I A/c	3,000	$3,64,200$	By Cost Ledger Control A/c (Rs. $62.5 \times 3,000$ units)	3,000	$\mathbf{1 , 8 7 , 5 0 0}$
		 Loss A/c (Bal. Figure)		$\mathbf{1 , 7 6 , 7 0 0}$	
	$\{\mathbf{1 ~ M \}}$				

Answer:

(b) (i) Calculation of Net Wages paid to Worker ' R^{\prime} and ' S '

Particulars	R (Rs.)	S (Rs.)
Basic Wages	$15,000.00$	$30,000.00$
Dearness Allowance (DA) (50\% of Basic Wages)	$7,500.00$	$15,000.00$
Overtime Wages (Refer to Working Note 1)	$4,500.00$	----
Gross Wages earned	$27,000.00$	$45,000.00$
Less: Provident Fund $(7 \% \times$ Rs. 15,000$) ;(7.5 \% \times$ Rs.	$(1,050.00)$	$(2,250.00)$

30,000$)$		
Less: ESI $(2 \% \times$ Rs. 15,000$) ;(2 \% \times$ Rs. 30,000$)$	(300.00)	(600.00)
Net Wages paid	$\mathbf{1 / 2} \mathbf{~ M}\{$	$\mathbf{2 5 , 6 5 0 . 0 0}$
$\mathbf{4 2 , 1 5 0 . 0 0}$	\{1/2 M $\}$	

Calculation of ordinary wage rate per hour of Worker ' R ' and ' S^{\prime}

	R (Rs.)	S (Rs.)
Gross Wages (Basic Wages + DA) (excluding overtime)	22,500.00	45,000.00
Employer's contribution to P.F. and E.S.I.	1,350.00	2,850.00
	23,850.00	47,850.00
Ordinary wages Labour Rate per hour $\quad\{\mathbf{1 / 2} \mathbf{M}\}$ (Rs. $23,850 \div 200$ hours); (Rs. $47,850 \div 200$ hours)	119.25	239.25

(ii) Statement Showing Allocation of workers cost to each Job

	Total Wages	Jobs		
		A	B	C
Worker R				
Ordinary Wages (15:2:3)	23,850.00	17,887.50	2,385.00	3577.50
Overtime	4500.00	4500.00	-	--
Worker S				
Ordinary Wages (2:1:2)	47,850.00	19,140.00	9,570.00	19,140.00
	76,200.00	$\begin{array}{r} \hline 41,527.50 \\ \{1 \mathrm{M}\} \\ \hline \end{array}$	$\begin{array}{r} 11,955.00 \\ \{1 \mathrm{M}\} \\ \hline \end{array}$	$\begin{array}{r} 22,717.50 \\ \{1 \mathrm{M}\} \\ \hline \end{array}$

Working Note:

Normal Wages are considered as basic wages.

$$
\begin{aligned}
\text { Over time } & =\frac{2 \times(\text { Basic wage }+ \text { D.A. }) \times 20 \text { hours }}{200 \text { hours }} \\
& =2 \times \frac{\text { Rs. } 22,500}{200} \times 20 \text { hours } \\
& =\text { Rs. } \mathbf{4 , 5 0 0}\}\{\mathbf{1} \mathbf{~}\}
\end{aligned}
$$

Answer:

(c) The objectives of time-keeping in relation to attendance and payroll procedures are as follows:
(i) For the preparation of payrolls. $\{\mathbf{1} \mathbf{M}\}$
(ii) For calculating overtime. $\quad\{1 \mathrm{M}\}$
(iii) For ascertaining and controlling employee cost. $\} 1 \mathrm{M}\}$
(iv) For ascertaining idle time. $\} 1 \mathbf{M}\}$
(v) For disciplinary purposes.
(vi) For overhead distribution

Answer 5:

(a)

Statement of Cost
$\left.\begin{array}{|l|l|r|}\hline \text { Particulars } & \text { (Rs.) } \\ \hline \begin{array}{l}\text { A. Apportionment of capital } \\ \text { cost }\end{array} & \left(\frac{\text { Rs. } 900 \text { crore }}{10 \text { years }} \times \frac{1}{12 \text { months }}\right)\end{array}\right\}, \mathbf{7 , 5 0 , 0 0 , 0 0 0}\{\mathbf{1} \mathbf{~ M}$

Electricity	$1,50,000$
Telephone	$1,00,000$
	$4,72,000$
C. Maintenance cost	$50,00,000$
Total (A + B + C)	$\mathbf{8 , 0 4 , 7 2 , 0 0 0}$

(1) Calculation of cost per kilometre:
$=\frac{\text { Total Cost }}{\text { Total } \mathrm{km} .}=\frac{\text { Rs. } 8,04,72,000}{120 \mathrm{~km} .}=$ Rs. $\left.\left.6,70,600 \quad\right\} \mathbf{1} \mathbf{~ M}\right\}$
(2) Calculation of toll rate per vehicle:
$=\frac{\text { Total Cost }+25 \% \text { profit }}{\text { Vehicles per month }}=\frac{\text { Rs. } 8,04,72,000+\text { Rs. } 2,41,41,600}{1,00,00,000 \text { vehicles }}=$ Rs. 10.46$\left.\} \mathbf{1} \mathbf{~ M}\right\}$

Working :

Vehicles per month $=\frac{\text { Total estimated vehicles }}{10 \text { years }} \times \frac{1 \text { month }}{12 \text { month }}$

$$
\left.\left.=\frac{120 \text { crore }}{10 \text { years }} \times \frac{1 \text { month }}{12 \text { month }}=1 \text { Crore vehicles }\right\} \mathbf{1} \mathbf{~}\right\}
$$

Answer:

(b)

Particulars	Fruit Juices		
	Apple (Rs.)	Orange (Rs.)	Mixed Fruit (Rs.)
Material cost	$\begin{array}{r} 80,000 \\ (10,000 \times \text { Rs. } 8) \end{array}$	$\begin{array}{r} 90,000 \\ (15,000 \times \text { Rs. } 6) \\ \hline \end{array}$	$\begin{array}{r} 1,00,000 \\ (20,000 \times \text { Rs. } 5) \\ \hline \end{array}$
Direct labour cost	$\begin{array}{r} 50,000 \\ (10,000 \times \text { Rs. } 5) \\ \hline \end{array}$	$\begin{array}{r} 60,000 \\ (15,000 \times \text { Rs. } 4) \\ \hline \end{array}$	$\begin{array}{r} 60,000 \\ (20,000 \times \text { Rs. } 3) \\ \hline \end{array}$
Prime Cost (A)	1,30,000	1,50,000	1,60,000
Ordering cost	$\begin{array}{r} \mathbf{2 7 , 2 0 0} \\ (800 \times 34) \\ \hline \end{array}$	$\begin{array}{r} \mathbf{2 5 , 6 0 0} \\ (800 \times 32) \\ \hline \end{array}$	$\begin{array}{r} \mathbf{1 1 , 2 0 0} \\ (800 \times 14) \\ \hline \end{array}$
Delivery cost	$\begin{array}{r} 77,000 \\ (700 \times 110) \\ \hline \end{array}$	$\begin{array}{r} 44,800 \\ (700 \times 64) \end{array}$	$\begin{array}{r} \mathbf{3 6 , 4 0 0} \\ (700 \times 52) \end{array}$
Shelf stocking cost	$\begin{array}{r} 21,890 \\ (199 \times 110) \\ \hline \end{array}$	$\begin{array}{r} \mathbf{3 1 , 8 4 0} \\ (199 \times 160) \\ \hline \end{array}$	$\begin{array}{r} \mathbf{3 3 , 8 3 0} \\ (199 \times 170) \\ \hline \end{array}$
Overhead Cost (B)	1,26,090	1,02,240	81,430
Total Cost (A + B)	2,56,090	$1 \mathrm{M}\}$ 2,52,240	\}1 M \} 2,41,430

Answer:

(c) Various Level of Activities under ABC Methodology

Level of Activities	Meaning
1. Unit level activities	These are those activities for which the consumption of resources can be identified with the number of units produced.

$\left.\begin{array}{|l|l|}\hline \text { 2. Batch level activities } & \begin{array}{l}\text { The activities such as setting up of a machine or } \\ \text { processing a purchase order are performed each } \\ \text { time a batch of goods is produced. The cost of } \\ \text { batch related }\end{array} \\ \hline & \begin{array}{l}\text { activities varies with number of batches made, } \\ \text { but is common (or fixed) for all units within the } \\ \text { batch. }\end{array} \\ \hline \text { 3. Product level activities } & \begin{array}{l}\text { These are the activities which are performed to } \\ \text { support different products in product line. }\end{array} \\ \hline \text { 4. Facilities level activities } & \begin{array}{l}\text { These are the activities which cannot be directly } \\ \text { attributed to individual products. These activities } \\ \text { are necessary to sustain the manufacturing } \\ \text { process and are common and joint to all } \\ \text { products manufactured. }\end{array} \\ \hline\end{array}\right\}\{1 \mathbf{M}\}$

Answer 6:

(a)

Techniques	Description
Uniform Costing	$\begin{array}{l}\text { When a number of firms in an industry agree among } \\ \text { themselves to follow the same system of costing in detail, } \\ \text { adopting common terminology for various items and } \\ \text { processes they are said to follow a system of uniform } \\ \text { costing. } \\ \text { Advantages of such a system are: } \\ \text { i. } \begin{array}{l}\text { A comparison of the performance of each of the firms } \\ \text { can be made with that of another, or with the average } \\ \text { performance in the industry. } \\ \text { Under such a system, it is also possible to determine }\end{array} \\ \text { the cost of production of goods which is true for the } \\ \text { industry as a whole. It is found useful when tax-relief } \\ \text { or protection is sought from the Government. }\end{array}$
Marginal Costing	$\begin{array}{l}\text { It is defined as the ascertainment of marginal cost by } \\ \text { differentiating between fixed and variable costs. It is used } \\ \text { to ascertain effect of changes in volume or type of output } \\ \text { on profit. }\end{array}$

Answer:

(b) (i)

Joint Products - Joint products represent "two or more products separated in the course of the same processing operation usually requiring further processing, each product being in such proportion that no single product can be designated as a major product".
In other words, two or more products of equal importance, produced, simultaneously from the same process, with each having a significant relative sale value are known as joint products.
For example, in the oil industry, gasoline, fuel oil, lubricants, paraffin, coal tar, asphalt and kerosene are all produced from crude petroleum. These are known as joint products.
(ii) By-Products - These are defined as "products recovered from material discarded in a main process, or from the production of some major products, where the material value is to be considered at the time of severance from the main product." Thus, by- products emerge as a result of processing operation of another product or they are produced from the scrap or waste of materials of a process. In short, a by-product is a secondary or subsidiary product which emanates as a result of manufacture of the main product.
The point at which they are separated from the main product or products is known as split-off point. The expenses of processing are joint till the split off point.
Examples of by-products are molasses in the manufacture of sugar, tar, ammonia and benzole obtained on carbonisation of coal and glycerine obtained in the manufacture of soap.

Answer:

(c) Procedure of Setting Labour Time Standards

The following are the steps involved in setting labour standards:
(a) Standardisation: Products to be produced are decided based on \}\{1 M\}
(b) Labour specification: Types of labour and labour time is specified. Labour time specification is based on past records and it takes into account normal $\}\{\mathbf{1} \mathbf{M}\}$ wastage of time.
(c) Standardisation of methods: Selection of proper machines to use proper sequence and method of operations.
(d) Manufacturing layout: A plan of operation for each product listing the operations to be performed is prepared.
(e) Time and motion study: It is conducted for selecting the best way of completing the job or motions to be performed by workers and the standard time which an average worker will take for each job. This also takes into account the learning efficiency and learning effect.
(f) Training an d trial: Workers are trained to do the work and time spent at $\{1 / 2 \mathrm{M}\}$

Answer:

(d) Budgetary Control System: It is the system of management control and accounting in which all the operations are forecasted and planned in advance to the extent possible and the actual results compared with the forecasted and planned results.
Components of Budgetary Control System: The policy of a business for a defined period is represented by the master budget, the detailed components of which are given in a number of individual budgets called functional budgets. These functional budgets are broadly grouped under the following heads:

1. Physical budgets: Those budgets which contain information in quantitative terms such as the physical units of sales, production etc. This may include quantity of sales, quantity of production, inventories, and manpower budgets are physical budgets.
2. Cost budgets: Budgets which provides cost information in respect of manufacturing, administration, selling and distribution, etc. for example, manufacturing costs, selling costs, administration cost, and research and development cost budgets are cost budgets.
3. Profit budgets: A budget which enables the ascertainment of profit. For example, sales budget, profit and loss budget, etc.
4. Financial budgets: A budget which facilitates in ascertaining the financial
position of a concern, for example, cash budgets, capital expenditure
5. Financial budgets: A budget which facilitates in ascertaining the financial
position of a concern, for example, cash budgets, capital expenditure budget, budgeted balance sheet etc.
\qquad
