(GI-2, GI-6, GI-7, VI-1, VDI-1, DRIVE \& FMT)

DATE: 25.09.2023 MAXIMUM MARKS: $100 \quad$ TIMING: 3¼ Hours

COST AND MANAGEMENT ACCOUNTING

Answer to questions are to be given only in English except in the case of candidates who have opted for Hindi Medium. If a candidate who has not opted for Hindi Medium. His/her answer in Hindi will not be valued.

Question No. 1 is compulsory.
Candidates are also required to answer any Four questions from the remaining Five Questions.
In case, any candidate answers extra question(s)/sub-question(s) over and above the required number, then only the requisite number of questions first answered in the answer book shall be valued and subsequent extra question(s) answered shall be ignored.
Wherever necessary, suitable assumptions may be made and disclosed by way of note.

Answer 1:
(a) (i) Fixed cost for the year

Total Sales (43,200 units \times Rs. 150 per unit) $=$ Rs. 64,80,000
Break Even Sales
$=$ Rs. $64,80,000 \times 25 \%=$ Rs. 16,20,000
Fixed cost = Break Even Sales x P/V ratio
$=$ Rs. $16,20,000 \times 20 \%=$ Rs. $\mathbf{3 , 2 4 , 0 0 0}$
(ii) Profit earned for the year

Profit
(iii) Margin of Safety in units

Margin of safety (units)

$$
\begin{aligned}
& =\frac{\text { Profit }}{\text { Cont. per unit }} \\
& =\frac{\text { Rs. } 9,72,000}{R s .30}=32,400 \text { units }
\end{aligned}
$$

(iv) No of units to be sold to earn a profit of Rs. $12,00,000$

Desired Sales

$$
\begin{aligned}
& =\frac{\text { Fixed Cost }+ \text { Desired Profit }}{\text { Cont. per unit }} \\
& =\frac{\text { Rs. } 3,24,000+\text { Rs. } 12,00,000}{R s . ~} 30 \\
& =50,800 \text { units }
\end{aligned}
$$

(Each point 1.25 M)
Answer:
(b) (a) Variable Cost per Unit = Change in Semi - variable cost under two production level Change in production quantity in two levels

$$
\begin{aligned}
& =\frac{\text { Rs. } 3,10,000-\text { Rs. } 2,80,000}{42,000 \text { units }-36,000 \text { units }} \\
& =\text { Rs. } 5 \text { per units } \quad\}(2.5 \mathbf{~ M})
\end{aligned}
$$

(b) Total Fixed Cost $=$ Semi Variable Cost for 36,000 units - Variable cost for 36,000 units

$$
\begin{aligned}
& =\text { Rs. } 2,80,000-(36,000 \text { units } \times \text { Rs. } 5) \\
& =\text { Rs. } 1,00,000 \quad \text { \}(2.5 M) }
\end{aligned}
$$

Answer:

(c) (a)
(a) Rated capacity
36.5 tonnes
(Refers to the capacity of a machine or a plant as indicated by its manufacturer)
(b) Practical capacity
30.0 tonnes
[Defined as actually utilised capacity of a plant i.e. $\frac{36.5 \text { tonnes }}{365 \text { days }} \times(365-65)$ days
(c) Normal capacity
25.0 tonnes
(It is the capacity of a plant utilized based on sales expectancy)
(d) Actual capacity 25.2 tonnes
(Refers to the capacity actually achieved)
(Each point 1.25 M)

Answer:

(d)

(i) Statement of Equivalent Production (Using FIFO method)							
Particulars	Input Units	Particulars	Output Units	Equivalent Production			
				Material		Labour \& O.H.	
				\%	Units	\%	Units
Opening WIP	10,000	Completed and transferred to Process-II					
Units introduced	55,000	- From opening WIP	10,000	-		30	3,000
		- From fresh inputs	33,500	100	33,500	100	33,500
			43,500		33,500		36,500
		$\begin{aligned} & \text { Normal Loss } \\ & \{5 \% \text { (10,000 }+55,000 \\ & \text { units) }\} \end{aligned}$	3,250	-			-
		Abnormal loss $(9,500-3,250)$	6,250	100	6,250	60	3,750
		Closing WIP	12,000	100	12,000	90	10,800
	65,000		65,000		51,750		51,050

(Each Bold 1/10 M)
(ii) Abnormal Loss A/c

Particulars	Units	(Rs.)	Particulars	Units	(Rs.)
To Process-I A/c (Refer Working Note-2)	6,250	29,698	By Cost Ledger Control A/c $(6,250$ units \times Rs. 8.5)	$\mathbf{6 , 2 5 0}$	$\mathbf{5 3 , 1 2 5}$
 Loss A/c	-	23,427			
	$\mathbf{6 , 2 5 0}$	$\mathbf{5 3 , 1 2 5}$		$\mathbf{6 , 2 5 0}$	$\mathbf{5 3 , 1 2 5}$

(Each Bold 1/10 M)

Working Notes:

1.

Computation of Cost per unit

Particulars	Materials (Rs.)	Labour (Rs.)	Overhead (Rs.)
Input costs	$2,20,000$	26,500	61,500
Less: Realisable value of normal scrap $(3,250$ units x Rs. 8.5)	$(27,625)$	--	--
Net cost	$1,92,375$	26,500	61,500
Equivalent Units	51,750	51,050	51,050
Cost Per Unit	3.7174	0.5191	$\mathbf{1 . 2 0 4 7}$

Total cost per unit $=$ Rs. $(3.7174+0.5191+1.2047)=$ Rs. 5.4412
(Each Bold 1/10 M)
2.

Valuation of Abnormal Loss

Materials (6,250 units \times Rs. 3.7174)	(Rs.)

Labour (3,750 units \times Rs. 0.5191$)$	$1,946.63$
Overheads $(3,750$ units \times Rs. 1.2047$)$	$4,517.62$
	$\mathbf{2 9 , 6 9 8}$

Answer 2:
(a) Statement of Cost for the month of March, $2021 \quad(2,30,000=1 \mathrm{M})$ (Rest Bold =1.8M)

Particulars	Amount (Rs.)	Amount (Rs.)
(i) Cost of Material Consumed:		
Raw materials purchased (Rs. 2,00,000 - Rs. 40,000)	1,60,000	
Carriage inwards	20,000	
Add: Opening stock of raw materials	80,000	
Less: Closing stock of raw materials	$(30,000)$	2,30,000
Direct Wages		1,20,000
Direct expenses:		
Cost of special drawing	30,000	
Hire charges paid for Plant	24,000	54,000
(ii) Prime Cost		4,04,000
Carriage on return	6,000	
Store overheads (10\% of material consumed)	23,000	
Factory overheads (20% of Prime cost)	80,800	
Additional expenditure for rectification of defective products (refer working note)	2,160	1,11,960
Gross factory cost		5,15,960
Add: Opening value of W-I-P		50,000
Less: Closing value of W-I-P		$(24,000)$
(iii) Works/ Factory Cost		5,41,960
Less: Realisable value on sale of scrap		$(5,000)$
(iv) Cost of Production		5,36,960
Add: Opening stock of finished goods		
Less: Closing stock of finished goods		
Cost of Goods Sold		5,36,960
Administrative overheads:		
Maintenance of office building	2,000	
Salary paid to Office staff	25,000	
Legal Charges	2,500	29,500
Selling overheads:		
Expenses for participation in Industrial exhibition	8,000	8,000
Distribution overheads:		
Depreciation on delivery van	6,000	
Warehousing charges	1,500	7,500
(v) Cost of Sales		5,81,960

Alternative Solution
 (considering Hire charges paid for Plant as indirect expenses)
 Statement of Cost for the month of March, 2021

Particulars	Amount (Rs.)	Amount (Rs.)
Cost of Material Consumed:		
Raw materials purchased (Rs. 2,00,000 - Rs. 40,000)	$1,60,000$	
Carriage inwards	20,000	
Add: Opening stock of raw materials	80,000	
Less: Closing stock of raw materials	$(30,000)$	$\mathbf{2 , 3 0 , 0 0 0}$
Direct Wages		$\mathbf{1 , 2 0 , 0 0 0}$

Direct expenses:		
Cost of special drawing	30,000	30,000
Prime Cost		3,80,000
Hire charges paid for Plant	24,000	
Carriage on return	6,000	
Store overheads (10\% of material consumed)	23,000	
Factory overheads (20\% of Prime cost)	76,000	
Additional expenditure for rectification of defective products (refer working note)	2,160	1,31,160
Gross factory cost		5,11,160
Add: Opening value of W-I-P		50,000
Less: Closing value of W-I-P		$(24,000)$
Works/ Factory Cost		5,37,160
Less: Realisable value on sale of scrap		$(5,000)$
Cost of Production		5,32,160
Add: Opening stock of finished goods		
Less: Closing stock of finished goods		-
Cost of Goods Sold		5,32,160
Administrative overheads:		
Maintenance of office building	2,000	
Salary paid to Office staff	25,000	
Legal Charges	2,500	29,500
Selling overheads:		
Expenses for participation in Industrial exhibition	8,000	8,000
Distribution overheads:		
Depreciation on delivery van	6,000	
Warehousing charges	1,500	7,500
Cost of Sales		5,77,160

Working Notes:

1. Number of Rectified units
Total Output 8,000 units

Less: Rejected 10\%
800 units
Finished product
Rectified units (10\% of finished product)
7,200 units
720 units
2. Proportionate additional expenditure on $\mathbf{7 2 0}$ units
$=20 \%$ of proportionate direct wages
$=0.20 \times($ Rs. $1,20,000 / 8,000) \times 720$
= Rs. 2,160
Answer:
(b)

Production Budget of Product Minimax and Heavyhigh (in units)

	April		May		June		Total	
	MM	HH	MM	HH	MM	HH	MM	HH
Sales	8,000	6,000	10,000	8,000	12,000	9,000	30,000	23,000
Add: Closing Stock (25\% of next month's sale)	2,500	2,000	3,000	2,250	4,000	3,500	9,500	7,750
Less: Opening Stock	2,000*	1,500*	2,500	2,000	3,000	2,250	7,500	5,750
Production units	8,500	6,500	10,500	8,250	13,000	10,250	32,000	25,000

* Opening stock of April is the closing stock of March, which is as per company's policy 25% of next month" sale.
(Each bold 1/4 M)
Production Cost Budget

Element of cost	Rate (Rs.)		Amount (Rs.)	
	MM	HH	MM	HH

	$(32,000$ units $)$	$(25,000$ units $)$		
Direct Material	220	280	$\mathbf{7 0 , 4 0 , 0 0 0}$	$\mathbf{7 0 , 0 0 , 0 0 0}$
Direct Labour	130	120	$\mathbf{4 1 , 6 0 , 0 0 0}$	$\mathbf{3 0 , 0 0 , 0 0 0}$
Manufacturing Overhead $(4,00,000 \div 1,80,000 \times 32,000)$			$\mathbf{7 1 , 1 1 1}$	
$(5,00,000 \div 1,20,000 \times 25,000)$				$\mathbf{1 , 0 4 , 1 6 7}$
			$\mathbf{1 , 1 2 , 7 1 , 1 1 1}$	$\mathbf{1 , 0 1 , 0 4 , 1 6 7}$

(Each bold 1/4 M)

Answer 3:

(a) Statement of Cost

	First three months (Rs.)	Remaining nine months (Rs.)	Total (Rs.)
	37,500 units	1,68,750 units	2,06,250 units
Direct material	18,75,000	84,37,500	1,03,12,500
Direct employee cost	6,00,000	27,00,000	33,00,000
Indirect - variable expenses	3,75,000	16,87,500	20,62,500
Indirect - fixed expenses	8,12,500	24,37,500	32,50,000
Indirect - semi-variable expenses			
For first three months @ Rs. 40,000 p.m.	1,20,000		1,20,000
For remaining nine months @ Rs. $70,000^{*}$ p.m.		6,30,000	6,30,000
Total cost	37,82,500	1,58,92,500	1,96,75,000
Desired profit	-	-	10,00,000
Sales value	-	-	2,06,75,000
Average selling price per unit			100.24

* Rs. 40,000 for 50% capacity + Rs. 15,000 for 20% increase in capacity + Rs. 15,000 for 5% increase in capacity (because cost is increased for every 20% increase in capacity or part thereof)
(Each bold 1/2 M)
Answer:
(b)

(i) Process- A Account					
Particulars	Units	Amount (Rs.)	Particulars	Units	Amount (Rs.)
To Input	40,000	3,60,000	By Normal wastage (2,000 units \times Rs. 15)	2,000	30,000
To Material	---	2,42,000	By Abnormal loss A/c (1,000 units \times Rs. 27)	1,000	27,000
To Direct wages	---	2,58,000	$\begin{aligned} & \text { By Process- B } \\ & (29,600 \text { units } \times \text { Rs. } 27) \end{aligned}$	29,600	7,99,200
To Manufacturing Exp.	---	1,96,000	By Profit \& Loss A/c (7,400 units \times Rs. 27)	7,400	1,99,800
	40,000	10,56,000		40,000	10,56,000

(Each bold 1/5 M)
Cost per unit
$=\frac{` 10,56,000-` 30,000}{40,000 \text { units }-2,000 \text { units }}=` 27$ per unit
Normal wastage $\quad=40,000$ units $\times 5 \%=2,000$ units
Abnormal loss $\quad=40,000$ units $-(37,000$ units $+2,000$ units $)=1,000$ units
Transfer to Process-B $=37,000$ units $\times 80 \%=29,600$ units
Sale
$=37,000$ units $\times 20 \%=7,400$ units

Process- B Account

Particulars	Units	Amount (Rs.)	Particulars	Units	Amount (Rs.)
To Process- A A/c	29,600	7,99,200	By Normal wastage (2,960 units \times Rs. 20)	2,960	59,200
To Material	---	2,25,000	By Profit \& Loss A/c (27,000 units \times Rs. 48)	27,000	12,96,000
To Direct Wages	---	1,90,000			
To Manufacturing Exp.	---	1,23,720			
To Abnormal Gain A/c (360 units \times Rs. 48)	360	17,280			
	29,960	13,55,200		29,960	13,55,200

(Each bold 1/5 M)
Cost per unit $\quad=\frac{` 13,37,920-` 59,200}{29,600 \text { units }-2,960 \text { units }}=` 48$ per unit
Normal wastage $\quad=29,600$ units $\times 10 \%=2,960$ units
Abnormal gain
$=(27,000$ units $+2,960$ units $)-29,600$ units $=360$ units
(ii)

Profit \& Loss Account

Particulars	Amount (Rs.)	Particulars	Amount (Rs.)
To Process- A A/c	1,99,800	By Sales:	
To Process- B A/c	12,96,000	$\begin{aligned} & \text { Process-A } \\ & (7,400 \text { units } \times \text { Rs. } 37) \end{aligned}$	2,73,800
To Abnormal loss A/c	12,000	$\begin{aligned} & \text { - Process- B } \\ & (27,000 \text { units } \times \text { Rs. } 61) \end{aligned}$	16,47,000
To Indirect Expenses	4,48,080	By Abnormal gain	10,080
		By Net loss	25,000
	19,55,880		19,55,880

(Each bold 1/5 M)

Working Notes:

Normal wastage (Loss) Account

Particulars	Units	Amount $($ Rs. $)$	Particulars	Units	Amount (Rs.)
To Process- A A/c	$\mathbf{2 , 0 0 0}$	$\mathbf{3 0 , 0 0 0}$By Abnormal Gain A/c $(360$ units \times Rs. 20)	$\mathbf{3 6 0}$	$\mathbf{7 , 2 0 0}$	
To Process- B A/c	$\mathbf{2 , 9 6 0}$	$\mathbf{5 9 , 2 0 0}$ By Bank (Sales)	$\mathbf{4 , 6 0 0}$	$\mathbf{8 2 , 0 0 0}$	
	4,960	89,200		4,960	89,200

(Each bold 1/5 M)
Abnormal Loss Account

Particulars	Units	Amount (Rs.)	Particulars	Units	Amount (Rs.)
To Process- A A/c	1,000	27,000	$\begin{aligned} & \text { By Bank A/c } \\ & (1,000 \text { units } \times \text { Rs. } 15) \end{aligned}$	1,000	15,000
			By Profit \& Loss A/c	---	12,000
	1,000	27,000		1,000	27,000

(Each bold 1/5 M)
Abnormal Gain Account

Particulars	Units	Amount (Rs.)	Particulars	Units	Amount (Rs.)
To Normal loss A/c	$\mathbf{3 6 0}$	$\mathbf{7 , 2 0 0}$	By Process- B A/c	$\mathbf{3 6 0}$	$\mathbf{1 7 , 2 8 0}$

$(360$ units \times Rs. 20 $)$					
To Profit \& Loss A/c		$\mathbf{1 0 , 0 8 0}$			
	360	17,280		360	17,280

(Each bold 1/5 M)

Answer 4:

(a)
(i) Material Usage Variance = Std. Price (Std. Quantity - Actual Quantity)
$=$ Rs. 90 ($9,000 \mathrm{~kg} .-8,900 \mathrm{~kg}$.)
= Rs. 9,000 (Favourable)
(ii) Material Price Variance = Actual Quantity (Std. Price - Actual Price)
$=8,900 \mathrm{~kg}$. (Rs. $90-$ Rs. 92) $=$ Rs. 17,800 (Adverse)
(iii) Material Cost Variance $=$ Std. Material Cost - Actual Material Cost
$=(S Q \times S P)-(A Q \times A P)$
$=(9,000 \mathrm{~kg} . \times$ Rs. 90$)-(8,900 \mathrm{~kg} . \times$ Rs. 92$)$
$=$ Rs. 8, 10,000 - Rs. 8,18,800
$=$ Rs. 8,800 (Adverse)
(iv) Labour Efficiency Variance = Std. Rate (Std. Hours - Actual Hours)
$=$ Rs. 80 ($\frac{9,000}{10} \times 8$ hours $-7,000 \mathrm{hrs}$.)
$=$ Rs. 80 (7,200 hrs. $-7,000 \mathrm{hrs}$.)
= Rs. 16,000 (Favourable)
(v) Labour Rate Variance = Actual Hours (Std. Rate - Actual Rate)
$=7,000$ hrs. (Rs. $80-$ Rs. 84)
= Rs. 28,000 (Adverse)
(vi) Labour Cost Variance
$=$ Std. Labour Cost - Actual Labour Cost
$=(\mathrm{SH} \times \mathrm{SR})-(\mathrm{AH} \times \mathrm{AR})$
$=(7,200$ hrs. \times Rs. 80$)-(7,000$ hrs. \times Rs. 84$)$
$=$ Rs. 5,76,000 - Rs. 5,88,000
= Rs. 12,000 (Adverse)
(vii) Variable Cost Variance $=$ Std. Variable Cost - Actual Variable Cost
$=(7,200$ hrs. \times Rs. 20) - Rs. 1,40,000
= Rs. 4,000 (Adverse)
(viii) Fixed Overhead Cost Variance $=$ Absorbed Fixed Overhead - Actual Fixed Overhead
$=\frac{250}{10 \mathrm{kgs}} \times 9,000 \mathrm{kgs} .-$ Rs. $2,60,000$
$=$ Rs. $2,25,000-$ Rs. $2,60,000=$ Rs. 35,000 (Adverse)
(Each point =1.25 M)

Answer:

(b) Working Notes:

1. Total Distance (in km.) covered per month

Bus route	Km. per trip	Trips per day	Days per month	Km. per month
Delhi to Hisar	160	2	9	2,880
Delhi to Aligarh	160	2	12	3,840
Delhi to Alwar	170	2	6	2,040
Total				

2. Passenger- km. per month

| Total seats available | Capacity utilised | | Km. per
 per month (at 100%
 trip
 capacity) | $(\%)$ | Seats |
| :--- | :---: | :---: | :---: | :---: | :---: | | Passenger- |
| :---: |
| Km. per
 month |

Delhi to Hisar \& Back	$\begin{array}{r} 900 \\ (50 \text { seats } \times 2 \text { trips } \times 9 \\ \text { days }) \end{array}$	90	810	160	$\begin{array}{r} 1,29,600 \\ (810 \text { seats } \times \\ 160 \mathrm{~km} .) \\ \hline \end{array}$
Delhi to Aligarh \& Back	1,200 $(50$ seats $\times 2$ trips $\times 12$ days $)$	95	1,140	160	$\begin{array}{r} 1,82,400 \\ (1,140 \text { seats } \\ \times 160 \mathrm{~km} .) \\ \hline \end{array}$
Delhi to Alwar \& Back	$\begin{array}{r} 600 \\ (50 \text { seats } \times 2 \text { trips } \times 6 \\ \text { days }) \\ \hline \end{array}$	100	600	170	$\begin{array}{r} 1,02,000 \\ (600 \text { seats } \times \\ 170 \mathrm{~km} .) \\ \hline \end{array}$
Total					4,14,000

(Bold 3/4 M)
Monthly Operating Cost Statement

Particulars	(Rs.)	(Rs.)
(i) Running Costs		
Diesel $\{(8,760 \mathrm{~km} \div 5 \mathrm{~km}) \times$ Rs. 90$\}$	1,57,680.00	
Lubricant oil $\{(8,760 \mathrm{~km} \div 100) \times$ Rs. 30$\}$	2,628.00	1,60,308.00
(ii) Maintenance Costs		
Repairs \& Maintenance		5,000.00
(iii) Standing charges		
Salary to driver	30,000.00	
Salary to conductor	26,000.00	
Salary of part-time accountant	7,000.00	
Insurance (Rs. 6,000 $\div 12$)	500.00	
Road tax (Rs. 21,912 $\div 12$)	1,826.00	
Permit fee	500.00	
Depreciation $\{($ Rs. $15,00,000 \times 30 \%) \div 12\}$	37,500.00	1,03,326.00
Total costs per month before Passenger Tax (i)+(ii)+(iii)		2,68,634.00
Passenger Tax*		1,07,453.60
Total Cost		3,76,087.60
Add: Profit*		1,61,180.40
Total takings per month		5,37,268.00

*Let total takings be X then,
(Each bold 1/4 M)
$\mathrm{X}=$ Total costs per month before passenger tax +0.2 X (passenger tax) +0.3 X (profit)
$\mathrm{X}=$ Rs. $2,68,634+0.2 \mathrm{X}+0.3 \mathrm{X}$
$0.5 X=$ Rs. $2,68,634$ or, $X=$ Rs. $5,37,268$
Passenger Tax $=20 \%$ of Rs. $5,37,268=$ Rs. $1,07,453.60$
Profit $\quad=30 \%$ of Rs. $5,37,268=$ Rs. $1,61,180.40$
Calculation of Rate per passenger km. and fares to be charged for different routes Rate per Passenger-Km.

Total takings per month
Total Passenger - Km. per month
Rs. 5,37,268
Rs. $4,14,000$ Passenger-Km. = Rs. 1.30 (approx.) $\}\{2 \mathrm{M}\}$
Bus fare to be charged per passenger:

Delhi to Hisar	$=$	Rs. $1.30 \times 160 \mathrm{~km}$	$=$	Rs. 208.00
Delhi to Aligarh	$=$	Rs. $1.30 \times 160 \mathrm{~km}$	$=$	Rs. 208.00
Delhi to Alwar	$=$	Rs. $1.30 \times 170 \mathrm{~km}$	$=$	Rs. 221.00

Answer 5:

(a) (i)

Statement of Operating income and Operating income as a percentage of revenues for each product line
(When support costs are allocated to product lines on the basis of cost of goods sold of each product)

	Soft Drinks (Rs.)	Fresh Produce (Rs.)	Packaged Foods (Rs.)	Total (Rs.)
Revenues: (A)	39,67,500	1,05,03,000	60,49,500	2,05,20,000
Cost of Goods sold (COGS): (B)	30,00,000	75,00,000	45,00,000	1,50,00,000
Support cost (30\% of COGS): (C) (Refer working notes)	9,00,000	22,50,000	13,50,000	45,00,000
Total cost: $(\mathrm{D})=\{(\mathrm{B})+(\mathrm{C})\}$	39,00,000	97,50,000	58,50,000	1,95,00,000
Operating income: $\mathrm{E}=\{(\mathrm{A})-(\mathrm{D})\}$	67,500	7,53,000	1,99,500	10,20,000
Operating income as a percentage of revenues: $(E / A) \times 100$)	1.70\%	7.17\%	3.30\%	4.97\%

(Each bold 1/8 M)

Working notes:

1. Total support cost:

	(Rs.)
Bottles returns	$\mathbf{6 0 , 0 0 0}$
Ordering	$\mathbf{7 , 8 0 , 0 0 0}$
Delivery	$\mathbf{1 2 , 6 0 , 0 0 0}$
Shelf stocking	$\mathbf{8 , 6 4 , 0 0 0}$
Customer support	$\mathbf{1 5 , 3 6 , 0 0 0}$
Total support cost	$\mathbf{4 5 , 0 0 , 0 0 0}$

(Each bold 1/8 M)
2. Percentage of support cost to cost of goods sold (COGS):

$$
\begin{aligned}
& =\frac{\text { Total support cost }}{\text { Total cost of goods sold }} \times 100 \\
& =\frac{\text { Rs. } 45,00,000}{\text { Rs. } 1,50,00,000} \times 100=30 \%
\end{aligned}
$$

$$
(30 \%=3 / 4 \mathrm{M})
$$

3. Cost for each activity cost driver:

Activity (1)	Total cost $($ Rs. $)(2)$	Cost allocation base (3)	Cost driver rate (4)=[(2) $\div(3)]$
Ordering	$7,80,000$	1,560 purchase orders	Rs. $\mathbf{5 0 0}$ per purchase order
Delivery	$12,60,000$	3,150 deliveries	Rs. $\mathbf{4 0 0}$ per delivery
Shelf-stocking	$8,64,000$	8,640 hours	Rs. $\mathbf{1 0 0}$ per stocking hour
Customer support	$15,36,000$	$15,36,000$ items sold	Rs. $\mathbf{1}$ per item sold

(Each bold 1/8 M)
(ii) Statement of Operating income and Operating income as a percentage of revenues for each product line
(When support costs are allocated to product lines using an activity- based costing system)

	Soft drinks (Rs.)	Fresh Produce (Rs.)	Packaged Food (Rs.)	Total (Rs.)
Revenues: (A)	$\mathbf{3 9 , 6 7 , 5 0 0}$	$\mathbf{1 , 0 5 , 0 3 , 0 0 0}$	$\mathbf{6 0 , 4 9 , 5 0 0}$	$\mathbf{2 , 0 5 , 2 0 , 0 0 0}$
Cost \& Goods sold	$\mathbf{3 0 , 0 0 , 0 0 0}$	$\mathbf{7 5 , 0 0 , 0 0 0}$	$\mathbf{4 5 , 0 0 , 0 0 0}$	$\mathbf{1 , 5 0 , 0 0 , 0 0 0}$
Bottle return costs	$\mathbf{6 0 , 0 0 0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{6 0 , 0 0 0}$
Ordering cost* $(360: 840: 360)$	$\mathbf{1 , 8 0 , 0 0 0}$	$\mathbf{4 , 2 0 , 0 0 0}$	$\mathbf{1 , 8 0 , 0 0 0}$	$\mathbf{7 , 8 0 , 0 0 0}$

Delivery cost*	1,20,000	8,76,000	2,64,000	12,60,000
(300:2190:660)				
Shelf stocking cost* (540:5400:2700)	54,000	5,40,000	2,70,000	8,64,000
$\begin{array}{\|l} \hline \text { Customer Support cost* } \\ (1,26,000: 11,04,000: 3,06,000) \\ \hline \end{array}$	1,26,000	11,04,000	3,06,000	15,36,000
Total cost: (B)	35,40,000	1,04,40,000	55,20,000	1,95,00,000
Operating income C:\{(A)- (B)\}	4,27,500	63,000	5,29,500	10,20,000
Operating income as a \% of revenues	10.78\%	0.60\%	8.75\%	4.97\%

* Refer to working note 3
(Each bold 1/8 M)
(b) A shop floor supervisor of a small factory presented the following cost for Job No. 303, to determine the selling price.

	Per unit (Rs.)
Materials	70
Direct wages 18 hours @ Rs. 2.50	
(Deptt. X 8 hours; Deptt. Y 6 hours; Deptt. Z 4 hrs)	45
Chargeable expenses	5
	120
Add :33-1/3 \% for expenses cost	40
	160

Analysis of the Profit/Loss Account
(For the year 20X2)

		(Rs.)		(Rs.)
Materials used		$1,50,000$	Sales less returns	$2,50,000$
Direct wages :				
Deptt. X	10,000			
Deptt. Y	1,000			
Deptt. Z	8,000	30,000		
Special stores items		4,000		
Overheads :	5,000			
Deptt. X	9,000			
Deptt. Y	2,000	16,000		$2,50,000$
Deptt. Z		$2,00,000$		50,000
Works cost		50,000		
Gross profit c/d		$2,50,000$		50,000
	20,000	Gross profit b/d		
Selling expenses	30,000			
Net profit		50,000		

It is also noted that average hourly rates for the three Departments X, Y and Z are similar.
You are required to :
(i) Draw up a job cost sheet.
(ii) Calculate the entire revised cost using 20X2 actual figures as basis.
(iii) Add 20% to total cost to determine selling price.

Answer:

(b)

Customer Details
Date of commencement

Job Cost Sheet

Job No. Date of completion

Particulars	Amount (Rs.)
Direct materials	70
Direct wages:	
Deptt. X Rs. 2.50×8 hrs. $=$ Rs. 20.00	
Deptt. Y Rs. $2.50 \times 6 \mathrm{hrs}$. $=$ Rs. 15.00	
Deptt. Z Rs. $2.50 \times 4 \mathrm{hrs}$. $=$ Rs. 10.00	45
Chargeable expenses	5
Prime cost	120
Overheads:	
Deptt. $\mathrm{X}=\frac{R s .5,000}{R s .10,000} \times 100=50 \%$ of Rs. $20=$ Rs. 10.00	
Deptt. $\mathrm{Y}=\frac{R s .9,000}{R s .12,000} \times 100=75 \%$ of Rs. $15=$ Rs. 11.25	
Deptt. Z $=\frac{R s .2,000}{R s . ~} 8,000 \times 100=25 \%$ of Rs. $10=$ Rs. 2.50	23.75
Works cost	143.75
Selling expenses $=\frac{R s .20,000}{R s .2,00,000} \times 100=10 \%$ of work cost	14.38
Total cost	158.13
Profit (20\% of total cost)	31.63
Selling price	189.76

Answer 6:

(a) Cost Unit of Industries:

S. No.	Industry	Cost Unit Basis
(i)	Electricity	Kilowatt-hour (kWh)
(ii)	Automobile	Number
(iii)	Cement	Ton/ per bag etc.
(iv)	Steel	Ton
(v)	Gas	Cubic feet
(vi)	Brick-making	1,000 bricks
(vii)	Coal mining	Tonne/ton
(viii)	Engineering	Contract, job
(ix)	Professional services	Chargeable hour, job, contract
(x)	Hospitals	Patient day

Answer:
(b) Method of Costing

S.No.	Industry	Method of Costing
(i)	Oil Refinery	Process Costing
(ii)	Interior Decoration	Job Costing
(iii)	Airlines Company	Operation/ Service Costing
(iv)	Advertising	Job Costing
(v)	Car Assembly	Multiple Costing
\{Each		
Point		
1 M \}		

Answer:

(c) Zero-based Budgeting: (ZBB) is an emergent form of budgeting which arises to overcome the limitations of incremental (traditional) budgeting system. Zero- based Budgeting (ZBB) is defined as 'a method of budgeting which requires each cost element to be specifically justified, although the activities to which the budget relates are being undertaken for the first time, without approval, the budget allowance is zero'.

ZBB is an activity based budgeting system where budgets are prepared for each activities rather than functional department. Justification in the form of cost benefits for the activity is required to be given. The activities are then evaluated and prioritized by the management on the basis of factors like synchronisation with organisational objectives, availability of funds, regulatory requirement etc.
ZBB is suitable for both corporate and non-corporate entities. In case of non-corporate entities like Government department, local bodies, not for profit organisations, where these entities need to justify the benefits of expenditures on social programmes like mid-day meal, installation of street lights, provision of drinking water etc.

ZBB involves the following stages:

(i) Identification and description of Decision packages
(ii) Evaluation of Decision packages
(iii) Ranking (Prioritisation) of the Decision packages
(iv) Allocation of resources

Answer:
(d) Treatment of items in arriving at the value of cost of material Purchased

S. No.	Items	Treatment
(i)	Detention charges/ Fine	$\begin{array}{l}\text { Detention charges/ fines imposed for non- } \\ \text { compliance of rule or law by any statutory } \\ \text { authority. It is an abnormal cost and not } \\ \text { included with cost of purchase. }\end{array}$
(ii)	Demurrage	$\begin{array}{l}\text { Demurrage is a penalty imposed by the } \\ \text { transporter for delay in uploading or offloading of } \\ \text { materials. It is an abnormal cost and not } \\ \text { included with cost of purchase. }\end{array}$
(iii)	Cost of returnable containers	$\begin{array}{l}\text { Treatment of cost of returnable containers are as } \\ \text { follows: } \\ \text { Returnable Containers: If the containers are } \\ \text { returned and their costs are refunded, then cost of } \\ \text { containers should not be considered in the cost of } \\ \text { purchase. } \\ \text { If the amount of refund on returning the container } \\ \text { is less than the amount paid, then, only the short } \\ \text { fall is added with the cost of purchase. }\end{array}$
(iv)	$\begin{array}{l}\text { Central Goods and Service Tax } \\ \text { (CGST) }\end{array}$	$\begin{array}{l}\text { Central Goods and Service Tax (CGST) is paid } \\ \text { on manufacture and supply of goods and } \\ \text { collected from the buyer. It is excluded from the }\end{array}$
cost of purchase if the input credit is available for		
the same. Unless mentioned specifically CGST is		
not added with the cost of purchase.		

\hline Shortage arises due to abnormal reasons such

reasons due to abnormal

as material mishandling, pilferage, or due to any

avoidable reasons are not absorbed by the good

units. Losses due to abnormal reasons are

debited to costing profit and loss account.\end{array}\right\}\)
\{Each Point 1 M

