INTERMEDIATE – MOCK TEST

(GI-10, GI-11, VI-2(A) & AI-2(A), DI-1+2 & Drive) DATE: 12.02.2024 MAXIMUM MARKS: 100 TIMING: 3¹/₄ Hours

COST AND MANAGEMENT ACCOUNTING

Answer to questions are to be given only in English except in the case of candidates who have opted for Hindi Medium. If a candidate who has not opted for Hindi Medium. His/her answer in Hindi will not be valued.

1. The question paper comprises two parts, Part I and Part II.

2. Part I comprises Multiple Choice Questions (MCQs).

3. Part II comprises questions which require descriptive type answers.

In case, any candidate answers extra question(s)/sub-question(s) over and above the required number, then all answers shall be valued and best four will be considered.

Wherever necessary, suitable assumptions may be made and disclosed by way of note.

SECTION – A

PART – I – MULTIPLE CHOICE QUESTIONS

TOTAL MARKS: 30 MARKS

Write the most appropriate answer to each of the following multiple choice questions by choosing one of the four options given, All questions are compulsory.

- 1. Ans. b
- 2. Ans. c
- 3. Ans. c
- 4. Ans. a
- 5. Ans. b
- 6. Ans. a 7. Ans. b
- 8. Ans. b
- 9. Ans. d
- 10. Ans. d
- 11. Ans. a
- 12. Ans. a
- 13. Ans. a
- 14. Ans. a
- 15. Ans. b
- 16. Ans. d
- 17. Ans. d
- 18. Ans. d
- 19. Ans. d
- 20. Ans. d 21. Ans. c
- 21. Ans. c 22. Ans. a
- 22. Alis. a 23. Ans. c
- 23. Ans. c 24. Ans. a
- 25. Ans. a
- 26. Ans. d
- 27. Ans. a
- 28. Ans. d
- 29. Ans. d
- 30. Ans. d

(30 MCQ x 1 M Each = 30 Marks)

SECTION – B

PART – II - DESCRIPTIVE QUESTIONS

QUESTIONS NO. 1 IS COMPULSORY

ATTEMPT ANY FOUR QUESTIONS THE REMAINING FIVE QUESTIONS

TOTAL MARKS: 70 MARKS

Answer 1:

(a)	Basic	Basic Data:							
	А	(Number of units to be purchased annually)	=	5,000 units					
	0	(Ordering cost per order)	=	Rs. 20					
	С	(Annual cost of storage per unit)	=	Rs. 5					
	Purch	ase price per unit inclusive of transportation cost	=	Rs. 50					

Computations:

(i)	Re-ordering level (ROL)	 Maximum usage per period × Maximum lead time 20 units per day × 15 days 200 units V1 MI
(ii)	Maximum level	= SOU units \mathcal{X} \mathcal{M} = ROL + ROQ - [Min. rate of consumption × Min.
		= 300 units + 200 units - [10 units per day \times 5 days] = 450 units $\{1 M\}$
(iii)	Minimum level	= ROL – Average rate of consumption × Average re- order-period
		= 300 units - (15 units per day × 10 days) =150 units }{1 M}
(iv)	Danger level	= Average consumption × Lead time for emergency purchases
		= 15 units per day \times 4 days
		= 60 units X1 M }

Working Notes:

1. Minimum rate of consumption per day

$$\begin{array}{c}
\text{Minimum rate of} \\
\text{Av. rate of} \\
\text{consumption} = \frac{\text{consumption}}{2} \\
\text{15 units per day} = \frac{\text{X units/day} + 20 \text{ units per day}}{2} \text{ or } \quad \text{X} = 10 \text{ units per day. } \{1/2 \text{ M}\}
\end{array}$$

2. Re-order Quantity (ROQ) or Economic Order Quantity (EOQ) =

$$\sqrt{\frac{2 \times 5,000 \text{ units} \times ₹20}{5}} = 200 \text{ units}$$
 {1 M}

Answer:

Computation of Over/Under-absorbed overhead expenses during the (b) month of August

	(Rs.)	(Rs.)	
Total expenses incurred in the month of August:		80,000	
Less: The amount paid according to labour court award	15,000	}{1/2 M}	
(Assumed to be non-recurring)			
Expenses of previous year {1/2 M}	5000	(20,000)	
Net overhead expenses incurred for the month		60,000	}{1/2 M}
Overhead recovered for 10,000 hours @ Rs. 5 per hour		(50,000)	
Under-absorbed overheads		10,000	}{1/2 M}

60% of under-absorbed overhead was due to defective planning, it will be charged to costing profit & loss account. **\{1/2 M\}** 40% of under-absorbed overhead i.e. Rs. 4,000 may be distributed over Finished Goods and Cost of Sales using supplementary overhead rate: Supplementary rate = <u>Under-absorbed OH</u>

Units produced

= <u>Rs. 4,000</u> = **Rs. 0.10** {1/2 M} 40,000 units

Amount of under-absorbed overheads charged to finished goods = 10,000 units \times Rs. 0.10 = Rs. 1,000 **\{1/2 M\}** Amount of under-absorbed overheads charged to cost of sales = 30,000 units \times Rs. 0.10 = Rs. 3,000 **\{1/2 M\}**

Answer:

(c)

Statement of Cost and Selling price fo	r 2,000 units of output

Particulars	Cost per unit (Rs.)	Total Cost (Rs.)	
Direct Materials	7.50) 15,000	
Direct Labour	3.00	6,000	
Prime cost	10.50) 21,000	
Add: Factory Overheads (Refer working note-2)	17.50) 35,000	
Total cost	28.00	56,000	
Add: Profit (20% of Sales is equivalent to 25% of Cost)	7.00	14,000	
Sales	{1/2 M}{ 35.00) 70,000	}{1/2 M

Working Notes:

(1) Direct Material and Direct Labour cost is varying directly in proportion to units produced and shall remain same per unit of output. Thus, direct material cost is equal to Rs. 9000 ÷ 1200 units = Rs. 7.50 per unit and }{1/4 M} labour cost is equal to Rs. 3600 ÷ 1200 units = Rs. 3 per unit. }{1/4 M}

(2) Calculation of Factory Overheads- An observation of cost related to different output levels for factory overheads shall reveal 2 things

a. Total cost increases from Rs. 31,000 to Rs. 34,000 along with increase in output from 1,200 units to 1,800 units but cost per unit is not constant. Thus it is not a variable cost. Cost per unit is reducing along with increase in output from Rs. 25.83 (Rs. 31,000 \div 1,200 units) to Rs. 18.89 (Rs. 34,000 \div 1,800 units)

b. Since the cost is varying with the output, it is also not a fixed cost. Hence, we can see that the cost is a semi- variable cost and has to be calculated for 2,000 units by analysing its fixed and variable components

Week Number	Units Manufactured	Factory Overheads
1	1,200	31,000
2	1,600	33,000
Difference	400	2,000

Therefore, Variable Cost per unit = Change in Factory Overheads \div Change in output

= Rs. 2,000 ÷ 400 = **Rs. 5** {1/4 M}

Now total factory overheads for week 2 = Rs. 33,000

Out of this, Variable Overheads = 1,600 units × Rs. 5 = **Rs. 8,000 }{1/4 M}** Thus, fixed component = Rs. 33,000 - Rs. 8,000 = **Rs. 25,000 }{1/2 M}** Therefore, Variable Cost for 2,000 units = 2,000 units × Rs. 5 = **Rs. 10,000 }{1/2 M}**

Fixed Cost will not change and hence will be = Rs. 25,000 {{1/2 M}

INTERMEDIATE – MOCK TEST

Therefore, Total Factory Cost = Variable Overheads + Fixed Overheads Overheads for 2,000 units = Rs. 10,000 + Rs. 25,000 = **Rs. 35,000. }**[1/2 M]

Answer 2:

(a) Difference between Cost Control and Cost Reduction

• •					
	-	Cost Control		Cost Reduction	
{1/2 M}{	1.	Cost control aims at maintaining the costs in accordance with the established standards.	1.	Cost reduction is concerned with reducing costs. It challenges all standards and endeavours to	}{1/2 M}
				improvise them continuously	
{1/2 M}{	2.	Cost control seeks to attain lowest possible cost under existing conditions.	2.	Cost reduction recognises no condition as permanent, since a change will result in lower cost.	}{1/2 M}
{1/2 M}{	3.	In case of cost control, emphasis is on past and present	3.	In case of cost reduction, it is on present and future.	}{1/2 M}
{1/2 M}{	4.	Cost control is a preventive function	4.	Cost reduction is a corrective function. It operates even when an efficient cost control system exists.	}{1/2 M}
{1 M}{	5.	Cost control ends when targets are achieved.	5.	Cost reduction has no visible end and is a continuous process.	}{1 M}

Answer:

(b) Workings:

1. Standard hours (SH) for actual hours produced are calculated as below:

Skilled	=	<u>1,800</u> × 1,280	= 1,152 hrs.
		2,000	
Semi-skilled	=	<u>1,800</u> × 480	= 432 hrs.
		2,000	
Unskilled	=	<u>1,800</u> × 240	= 216 hrs.
		2,000	

2. Actual hours (AH) paid are calculated as below:

Category	No. of Worker	Hours in a week	Total Hours
Skilled	28	40	1,120
Semi-skilled	18	40	720
Unskilled	4	40	160
			2,000

3. For 40 hours week total Revised standard hours (RSH) will be calculated as below:

Category	No. of Worker	Hours in a week	Total Hours
Skilled	32	40	1,280
Semi-skilled	12	40	480
Unskilled	6	40	240
			2,000

Calculations

Category of workers	SH × SR	AH × SR	AH × AR	RSH × SR
Skilled	1,152 × 3	1,120 × 3	1,120 × 4	1,280 × 3
	= 3,456	= 3,360	= 4,480	= 3,840
Semi-skilled	432 × 2 = 864	$720 \times 2 = 1,440$	$720 \times 3 = 2,160$	480 × 2 = 960
Unskilled	$216 \times 1 = 216$	$160 \times 1 = 160$	$160 \times 2 = 320$	$240 \times 1 = 240$
Total	Rs. 4,536	Rs. 4,960	Rs. 6,960	Rs. 5,040

Answ	er:						
(11)	LEV Rs. 42	4 (A)	= LMV = Rs. 8	+ LYV 30 (F) + Rs. 504 (A)		
(::)	Rs. 2,4	124 (A)	= Rs. 2	2,000 (A) + Rs. 42	24 (A)		
Check (i)	LCV		= LRV	+ LEV			
		Unskilled		= 216 - 240	= <u>Rs. 24 (A)</u>	Rs. 504 (A)}{1/2 N	/}
		Semi-skilled		= 864 - 960	= Rs. 96 (À)		
	(-)	Skilled		= 3,456 - 3,840	= Rs. 384 (A)		
	(v)	Labour Yield \	/ariance	e = SR (SH - RSH) or (SR × SH – SF	R × RSH)	
		Unskilled		= 240 - 160	= <u>Rs. 80 (F)</u>	Rs. 80 (F) <u>}</u> {1 M}	
		Semi-skilled		= 960 - 1,440	= Rs.480 (A)		
		Skilled		= 3,840 - 3,360	= Rs. 480 (F)		
	(iv)	Labour Mix Va	ariance	= SR (RSH - AH)	or (SR \times RSH) – ($(SR \times AH)$	
		Uliskilleu		- 210 - 100	– <u>KS. 50 (1)</u>	KS. 424 (A) (1 10)	
		Semi-skilled		= 864 - 1,440 = 216 - 160	= RS. 5/6 (A)	$P_{C} = A 2 A (A) \{1, M\}$	
		Skilled		= 3,456 - 3,360	= RS. 96 (F)		
	(iii)	Labour Efficie	ncy Var	iance= SR (SH - /	AH) or (SR × SH)	- (SR × AH)	
		Unskilled		= 160 - 320	= <u>Rs. 160 (A)</u>	2,000 (A) }{1 M}	
		Semi-skilled		= 1,440 - 2,160	= Rs. 720 (A)	·)	
	(")	Skilled	ananee	= 3.360 - 4.480	$= \text{Rs. } 1.120 \ (A)$	(λ)	
	(ii)	Labour Rate V	/ariance	= AH (SR - AR)	or (AH x SR) - (AI	H × AR)	
				= RS. 4,536 $-$ 6,9	960 = RS. 2,424 (A) <u>}</u> {1/2 M}	
				$=$ (SH \times SR) $-$ (A	$H \times AR$		
	(i)	Labour Cost V	ariance/	e = Std. Cost for h	ours worked – Act	ual cost paid	

(c)

Revised Sales Value = $\frac{\text{Desired Contribution}}{\text{Revised P/VRatio}^*} = \frac{0.40}{0.25} = 1.6$ {**1/2 M**}

This means sales value to be increased by 60% of the existing sales.

*Revised P/V Ratio = $\frac{\text{Revised Contribution}}{\text{Revised Selling Price}} = \frac{0.80 - 0.60}{0.80} = 0.25$ **{1/2 M}**

Required Sales Quantity = $\frac{\text{Desired Contribution}}{\text{Revised P/VRatio**Revised SellingPrice}} = \frac{0.40}{0.25 \times 0.80} = 2$

Therefore, Sales value to be increased by 60% and sales quantity to be χ_{3M} doubled to offset the reduction in selling price.

Proof:

Let selling price per unit is Rs. 10 and sales quantity is 100 units.

Data before change in selling price:

	(Rs.)
Sales (Rs. 10×100 units)	1,000
Contribution (40% of 1,000)	400
Variable cost (balancing figure)	600

Answer 3:

(a) (

(i) Calculation of Contribution to sales ratio at existing sales mix:

		Products			
	Α		В	С	
Selling Price (Rs.)	300		400	200	
Less: Variable Cost (Rs.) {1/4 M}	{ 150	{1/4 M}	200	120	}{1/4 M}
Contribution per unit (Rs.)	150		200	80	
P/V Ratio	50%		50%	40%	
Sales Mix	40%		35%	25%	
Contribution per rupee of sales (P/V Ratio × Sales Mix)	20%		17.5%	10%	47.5%
Present Total Contribution (Rs. 60,	00,000 ×	47.5%)	{1/4 M}{	Rs. 2	8,50,000
Less: Fixed Costs				Rs. 1	8,00,000
Present Profit				Rs. 1	0,50,000
Present Break-Even Sales (Rs. 18,00,000/0.475)				Rs. 37,8	9,473.68

(ii) Calculation of Contribution to sales ratio at proposed sales mix:

	Products				
	Α	В	E	Total	
Selling Price (Rs.)	300	400	300		
Less: Variable Cost (Rs.)	150	200	150		
Contribution per unit (Rs.) {1/4 M}	150 {1/4 M}{	200	150	{1/4 M}	
P/V Ratio	50%	50%	50%		
Sales Mix	45%	30%	25%		
Contribution per rupee of sales	22.5%	15%	12.5%	50%	
(P/V Ratio x Sales Mix)					
Proposed Total Contribution (Rs. 64	,00,000 × 50%)	{1/4 M}{	Rs. 32	2,00,000	
Less: Fixed Costs			Rs. 18	3,00,000	
Proposed Profit	Rs. 14	4,00,000			
Proposed Break-Even Sales			Rs. 36	5,00,000	Х
(Rs. 18,00,000/0.50)					

(iii) The proposed sales mix increases the total contribution to sales ratio from 47.5% to 50% and the total profit from Rs. 10,50,000 to Rs. 14,00,000. Thus, the proposed sales mix should be accepted.

Answer:

(b) (1) Calculation of hours to be paid for worker A:

	Normal hours	Extra hours	Overtime hours	Equivalent normal hours for overtime worked	Total normal hours	
Monday	8	1	11/2	3	12	
Tuesday	8				8	
Wednesday	8	1	11/2	3	12	
Thursday	8	1	1⁄2	1	10	
Friday	8	1	11/2	3	12	
Saturday						
Total	40 }{1/	2 M} 4 }{1/	2 M} 5	}{1/2 M} 10 }{1/2 M }	54	}{1/ 2

Calculation of hours to be paid for worker B:

	Normal hours	Extra hours	Overtime hours	Equivalent normal hours for overtime worked	Total normal hours
--	-----------------	----------------	-------------------	---	--------------------------

INTERMEDIATE – MOCK TEST

Monday	8			 8	
Tuesday	8			 8	
Wednesday	8			 8	
Thursday	8			 8	
Friday	8			 8	
Saturday	4	4*		 8	
Total	44 }{1	/2 M} 4 }{1/	2 M}	 48	}{1/2

(*Worker-B has neither worked more than 9 hours in any day nor more than 48 hours in the week)

Calculation of hours to be paid for worker C:

	Normal hours	Extra hours	Overtime hours	Equivalent normal hours for overtime worked	Total normal hours
Monday	8	1	11/2	3	12
Tuesday	8				8
Wednesday	8	1	11/2	3	12
Thursday	8	1	1⁄2	1	10
Friday	8	1	11/2	3	12
Saturday	8*				8
Total	48 }{1	2 M} 4 }{1	2 M} 5	}{1/2 M} 10 }{1/2 M}	62

(*Worker-C will be paid for equivalent 8 hours, though 4 hours of working is required on Saturday. Further, no overtime will be paid for working beyond 4 hours since it is paid for working beyond 9 hours.)

Wages payable:

	Α	В	С	
Basic Wages per hour (Rs.)	25.00	12.50	37.50	
Dearness allowance per hour (Rs.)	5.50	5.50	5.50	
Hourly rate (Rs.)	30.50	18.00	43.00	
Total normal hours	54.00	48.00	62.00	
Total Wages payable (Rs.)	1,647.00	864.00	2,666.00	}{1/2 M}
	}{1/2 M}	}{1/2 M}		-

Answer 4:

(a)

Budget Showing Current Position and Position for 2022-23

	Posit	ion for 20	21-22	Position for 2022-23				
	Α	В	Total	Α	A B		C Total	
			(A+B)				(A+B+C)	
Sales (units)	2,00,000	1,00,000	-	1,50,000	50,000	2,00,000	-	
	(Rs.)	(Rs.)	(Rs.)	(Rs.)	(Rs.)	(Rs.)	(Rs.)	
(A) Sales	4,00,000	3,50,000	7,50,000	3,00,000	1,75,000	3,50,000	8,25,000	
Direct Material	1,00,000	75,000	1,75,000	75,000	37,500	80,000	1,92,500	
Direct wages	50,000	50,000	1,00,000	37,500	25,000	50,000	1,12,500	
Factory overhead	50,000	50,000	1,00,000	37,500	25,000	50,000	1,12,500	
(variable)								
Other variable costs	50,000	30,000	80,000	37,500	15,000	50,000	1,02,500	
(B) Marginal Cost	2,50,000	2,05,000	4,55,000	1,87,500	1,02,500	2,30,000	5,20,000	
(C) Contribution	1,50,000	1,45,000	2,95,000	1,12,500	72,500	1,20,000	3,05,000	
(A-B)	}{1/2 M}	}{1/2 M}	}{1/2 M}	}{1/2 M}	}{1/2 M}	}{1/2 M}	}{1/2 M}	
Fixed costs –								
Factory			1,00,000				1,00,000	
– Others			80,000				80,000	
(D) Total fixed cost			1,80,000				1,80,000	
Profit			1,15,000	}{1 M}			1,25,000	}{1 M}
(C – D)								

Comments: Introduction of Product C is likely to increase profit by Rs. 10,000 (i.e. from Rs. 1,15,000 to Rs. 1,25,000) in 2022-23 as compared to 2021-22. {**1/2 M**} Therefore, introduction of product C is recommended.

Answer:

(b) Working notes:

1. Total support cost:

	(Rs.)	
Bottles returns	60,000	
Ordering	7,80,000	
Delivery	12,60,000	
Shelf stocking	8,64,000	
Customer support	15,36,000	
Total support cost	45,00,000	}{1/2 M}

2. Percentage of support cost to cost of goods sold (COGS):

 $= \frac{\text{Total support cost}}{\text{Total cost of goods sold}} \times 100$

 $= \frac{\text{Rs. } 45,00,000}{\text{Rs. } 1,50,00,000} \times 100 = 30\%$ {1/2 M}

3. Cost for each activity cost driver:

Activity (1)	Total cost (Rs.) (2)	Cost allocation base (3)	Cost driver rate (4)=[(2)÷(3)]	
Ordering	7,80,000	1,560 purchase orders	Rs. 500 per purchase order	}{1/2 M}
Delivery	12,60,000	3,150 deliveries	Rs. 400 per delivery	}{1/2 M}
Shelf-stocking	8,64,000	8,640 hours	Rs. 100 per stocking hour	}{1/2 M}
Customer support	15,36,000	15,36,000 items sold	Rs. 1 per item sold	}{1/2 M}

(i) Statement of Operating income and Operating income as a percentage of revenues for each product line

(When support costs are allocated to product lines on the basis of cost of goods sold of each product)

	Soft Drinks	Fresh Produce	Packaged Foods (Rs.)	Total (Rs.)	
	(Rs.)	(Rs.)			
Revenues: (A)	39,67,500	1,05,03,000	60,49,500	2,05,20,000	
Cost of Goods sold (COGS): (B)	30,00,000	75,00,000	45,00,000	1,50,00,000	
Support cost (30% of COGS): (C) (Refer working notes)	9,00,000	22,50,000	13,50,000	45,00,000	
Total cost: (D) = {(B) + (C)}	39,00,000	97,50,000	58,50,000	1,95,00,000	
Operating income: E= {(A)-(D)}	67,500 }{1/2 M}	7,53,000 }{1/2 M}	1,99,500 }{1/2 M}	10,20,000	
Operating income as a percentage of revenues: $(E/A) \times 100$	1.70%	7.17%	3.30%	4.97%	}{1/

(ii) Statement of Operating income and Operating income as a percentage of revenues for each product line

(When support costs are allocated to product lines using an activity- based costing system)

	Soft drinks	Fresh	Packaged	Total	
	(KS.)	(Rs.)	F000 (Rs.)	(KS.)	
Revenues: (A)	39,67,500	1,05,03,000	60,49,500	2,05,20,000	
Cost & Goods sold	30,00,000	75,00,000	45,00,000	1,50,00,000	
Bottle return costs	60,000	0	0	60,000	
Ordering cost*	1,80,000	4,20,000	1,80,000	7,80,000	
(360:840:360)					V1/4 M
Delivery cost*	1,20,000	8,76,000	2,64,000	12,60,000	Λ1/4 ΙνΙ
(300:2190:660)					L Each x 12
Shelf stocking cost*	54,000	5,40,000	2,70,000	8,64,000	= 3 M}
(540:5400:2700)					
Customer Support cost*	1,26,000	11,04,000	3,06,000	15,36,000	
(1,26,000:11,04,000:3,06,000))
Total cost: (B)	35,40,000	1,04,40,000	55,20,000	1,95,00,000	
Operating income C:{(A)- (B)}	4,27,500	63,000	5,29,500	10,20,000	
Operating income as a % of	10.78%	0.60%	8.75%	4.97%	
revenues					

= 3 M}

* Refer to working note 3

Answer 5:

Working Notes: (a)

Calculation of standard mix of input (assuming Standard input as (1)100 kg)

	Qty. (Kg)	Price (Rs.)	Amount (Rs.)
Chemical A	50	12	600
Chemical B	50	15	750
	100	13.50	1,350
Normal Loss (10%)	(10)		
	90		1,350

(2) Let the actual input of chemical A be X kg. and the actual price of chemical B be Rs. Y.

Given, Material yield variance = (Total standard input – Total Actual input) xStandard cost per unit of input $= [100 - (70 + X)] \times 13.5 = 135$ (A) Therefore, X = 40 kg. Also, Material cost variance= (Standard quantity x Standard price) -(Actual quantity x Actual price) $= 1,350 - {(40 \times 15) + (70 \times Y)} = 650 (A)$ = 1,350 - 600 - 70Y = 650A

Therefore, Y = **Rs. 20** }{2 M}

(i) Material mix variance

= (Revised Std. Quantity* – Actual quantity) x Standard Price Chemical A = $(55 - 40) \times 12$ = 180 (F) Chemical B = $(55 - 70) \times 15$ = 225 (A) = Rs. 45 (A) *Revised Std. Quantity: Chemical A = (70 + 40) x 50% = 55 }{1/4 M} Chemical B = $(70 + 40) \times 50\% = 55$ {1/4 M}

(ii) Material usage variance

= (Std. qty. – Actual qty.) × Std. price Chemical A = $(50 - 40) \times 12 = 120$ (F) Chemical B = $(50 - 70) \times 15 = 300$ (A) = Rs. 180 (A) **}1 M**

(iii) Material price variance

= (Std. price – Actual price) ×	Actual qty.
Chemical A = $(12 - 15) \times 40$	= 120 (A)
Chemical B = $(15 - 20) \times 70$	<u>= 350 (A)</u>
	$=$ Rs. 470 (A) $\{1 M\}$

(iv)	Actual loss of actual i	nput		
	Actual total input	=	110 kg.	
	Less: Actual output	=	<u>90 kg.</u>	
	Actual loss	=	<u>20 kg.</u>	}{1/2 M}

- (v) Actual input of chemical A = 40 kg. [As calculated in Working note(2)]. }{1/2 M}
- (vi) Actual price per kg. of chemical B = Rs. 20 [As calculated in Working \{1/2 M} note (2)].

Answer:

(b) (A) Costing books

Stores Control Account

Particulars	(Rs.)	Particulars	(Rs.)
To Balance b/d	32,000	By W.I.P. Control A/c	1,60,000
To General ledger	1,58,000	By Work overhead	20,000
adjustment A/c		control A/c	
To Work in progress	80,000	By Costing Profit and	6,000
control A/c		Loss A/c	
		By Balance c/d	84,000
	2,70,000		2,70,000

W.I.P. Control Account

Particulars	(Rs.)	Particulars	(Rs.)	
To Balance b/d	60,000	By Stores control A/c	80,000	
To Stores control A/c	1,60,000	By Costing profit and	4,00,000	
		loss A/c (Cost of sales)		
To Direct wages control A/c	65,000	By Balance c/d	45,000	}{1/2 M}
To Works overhead control a/c	2,40,000			
	5,25,000		5,25,000	

Works Overhead Control Account

Particulars	(Rs.)	Particulars	(Rs.)	
To General ledger adjustment A/c	2,50,000	By W.I.P. Control A/c	2,40,000	
To Store ledger control A/c	20,000	By Costing profit and loss A/c (under recovery)	30,000	}{1/2 M
	2,70,000		2,70,000	

Particulars	(Rs.)	Particula	ars	(Rs.)		
To W.I.P. control A/c	4,00,000	By General ledge	By General ledger			
(Cost of sales)		adjustment a/c				
To Works overhead	30,000	Cost of sales	4,00,000			
control A/c						
To Stores control A/c	6,000	10% profit	40,000	4,40,000		
(shortage)						
To Profit	4,000	}{1/2 M}		2,70,000		
	4,40,000			4,40,000		

Costing Profit & Loss Account

(B) Financial Books

Profit & Loss Account						
Particula	ars	(Rs.)	Particula	rs	(Rs.)]
To Opening stoo	ck		By Sales		4,40,000	
Stores	32,000		By Closing stock	<:		
W.I.P.	60,000	92,000	Stores	84,000		
To Purchases		1,58,000	W.I.P.	45,000	1,29,000	
To Wages incur	red	70,000	By Income	from	10,000	
			investment			
To Overheads in	ncurred	2,50,000	By loss		11,000	}{1/2 M}
To Loss on sale	of	20,000				
capital assets						
		5,90,000			5,90,000]

Reconciliation Statement

Particulars	(Rs.)	(Rs.)	
Profit as per Cost Accounts		4,000	
Add: Income from investment recorded in Financial		10,000	}{1/2 M}
accounts			
		14,000	}{1/2 M}
Less: Under absorption of wages in Cost accounts	5,000		
Loss on sales of capital asset only included in	20,000	25,000	}{1/2 M}
Financial accounts			
Loss as per Financial account		11,000	

Answer: (c)

Factory Cost Statement of Completed Job.

Month	Job No.	Materials	Direct labour	Factory overheads (80% of direct labour cost)	Factory cost
	(Rs.)	(Rs.)	(Rs.)	(Rs.)	(Rs.)
September	115	1,325	800	640	2765
October	115		125	{1/4 M}{ 100	225
Total		1,325	925	740	2,990
September	118	810	500	{1/4 M}{ 400	1,710
October	118	515	330	264	1,109
Total		1,325	830	664	2,819
September	120	765	475	380	1,620

INTERMEDIATE – MOCK TEST

October	120	665	245	{1/4 M}{ 196	1,106
Total	{1/4	M}{ 1,430	720	}{1/4 M} 576	2,726

Invoice Price of Complete Job					
Job No.	115 (Rs.)	118 (Rs.)	120 (Rs.)		
Factory cost	2,990.00	2,819.00	2,726.00		
Administration and selling overheads @ 10% of factory cost	299.00}	{1/4 M} 281.90	{1/4 M} 272.60	}{1/4 M}	
Total cost	3,289.00	3,100.90	2,998.60		
Profit (20% of total cost)	657.80	620.18	599.72		
Invoice Price	3,946.80	3,721.08	3,598.32		

.

Assumption: - Indirect labour costs have been included in the factory overhead which has been recovered as 80% of the labour cost. }{2 M}

Answer 6:

INSTALLATION OF COSTING SYSTEM (a)

As in the case of every other form of activity, it should be considered whether it would be profitable to have a cost accounting system. Management of an organisation needs complete and accurate information to make decisions. A wellestablished Costing system should provide all relevant information as and when required by management as well as various stakeholders.

Before setting up a system of cost accounting the under mentioned factors should be studied:

- Objective: The objective of costing system, for example whether it is\ (a) being introduced for fixing prices or for establishing a system of cost control.
- (b) Nature of Business or Industry: The Industry in which business is operating. Every business industry has its own peculiarity and objectives. According to its cost information requirement cost accounting methods are followed. For example, an oil refinery maintains process wise cost accounts to find out cost incurred on a particular process say in crude refinement process etc.
- Organisational Hierarchy: Costing system should fulfill the information (c) requirements of different levels of management. Top management is concerned with the corporate strategy, strategic level management is concerned with marketing strategy, product diversification, product pricing etc. Operational level management needs the information on standard quantity to be consumed, report on idle time etc.
- (d) **Knowing the product:** Nature of product determines the type of costing system to be implemented. The product which has by-products requires costing system which accounts for by-products as well. In case of perishable or short self- life products, marginal costing is appropriate to know the contribution and minimum price at which products could be sold.

{1/2 M Each for Any 8 Points}

- Knowing the production process: A good costing system can never be (e) established without the complete knowledge of the production process. Cost apportionment can be done on the most appropriate and scientific basis if a cost accountant can identify degree of effort or resources consumed in a particular process. This also includes some basic technical
- know-how and process peculiarity. Information synchronisation: Establishment of a department or a (f) system requires substantial amount of organisational resources. While drafting a costing system, information needs of various other departments should be taken into account. For example, in a typical business organisation accounts department needs to submit monthly stock

statement to its lender bank, quantity wise stock details at the time of filing returns to tax authorities etc.

- (g) **Method of maintenance of cost records:** The manner in which Cost and Financial accounts could be inter-locked into a single integral accounting system and how the results of separate sets of accounts i.e. cost and financial, could be reconciled by means of control accounts.
- (h) Statutory compliances and audit: Records are to be maintained to comply with statutory requirements and applicable cost accounting standards to be followed.
- (i) Information Attributes: Information generated from the Costing system should possess all the attributes of information i.e. complete, accurate, timeliness, relevant etc. to have an effective management information system (MIS).

Answer:

(b) Difference between Job Costing and Process Costing

-	The main points which distinguish job costing and process costing are as below:					
	Job Costing	Process Costing				
{1/2 M}	(i) A Job is carried out or a product is	The process of producing the product	}{1/2 M}			
(1) 2 101)(produced by specific orders.	has a continuous flow and the product				
		produced is homogeneous.				
{1/2 M}{	(ii) Costs are determined for each	Costs are compiled on time basis i.e.,	}{1/2 M}			
	job.	for production of a given accounting				
		period for each process or				
-		department.				
{1/2 M}{	(iii) Each job is separate and	Products lose their individual	}{1/2 M}			
	independent of other jobs.	identity as they are manufactured in a				
-		continuous flow.				
{1/2 M}{	(iv) Each job or order has a number	The unit cost of process is an average	}{1/2 M}			
	and costs are collected against the	cost for the period.				
_	same job number.					
{1/2 M}{	(v) Costs are computed when a job is	Costs are calculated at the end of the cost	}{1/2 M}			
	completed. The cost of a job may be	period. The unit cost of a process may be				
	determined by adding all costs against	computed by dividing the total cost for				
	the job.	the period by the output of the process				
-		during that period.				
	(VI) As production is not continuous	Process of production is usually				
	and each job may be different, so	standardized and is therefore, quite				
	more managerial attention is required	stable. Hence control here is				
ļ	for effective control.	comparatively easier.				

Answer:

(c) The following ratios are usually used by the management to measure development from budget.

Capacity Usage Ratio: This relationship between the budgeted number of working hours and the maximum possible number of working hours in a budget period.

Standard Capacity Employed Ratio: This ratio indicates the extent to which facilities were actually utilized during the budget period.

Level of Activity Ratio: This may be defined as the number of standard hours equivalent to work produced expressed as a percentage of the budget of standard hours.

Efficiency Ratio: This ratio may be defined as standard hours equivalent of work produced expressed as a percentage of the actual hours spent in producing the {1/2 M} work.

INTERMEDIATE – MOCK TEST

Calendar Ratio: This ratio may be defined as the relationship between the number of working days in a period and the number of working as in the relative to the budget period

Budget Ratios:

Efficiency Ratio = $\frac{\text{Standard Hours}}{\text{Actual Hours}} \times 100 \ \text{(1/2 M)}$ (i) Activity Ratio = $\frac{\text{Standard Hours}}{\text{More Normalized}} \times 100$ {1/2 M} (ii) Budgeted Hours $Calendar Ratio = \frac{Available Working Days}{Budgeted Working Days} \times 100 \ \figure{1.5} \ \figu$ (iii) Budgeted Hours (iv) Standard Capacity Usage Ratio = -— × 100 **}{1/2 M**} Max. possible Hours in the budgeted period Actual Hours Worked Actual Capacity Usage Ratio = — (v) — × 100 **}{1/4 M**} Max. possible working hours in a period Actual Usage of Budgeted Capacity Ratio = $\frac{A \text{ ctual working hours}}{B \text{ Budgeted Hours}} \times 100$ (vi)

**